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Abstract

This white paper presents the Quanscient
MultiphysicsAl workflow for Piezoelectric
Micromachined Ultrasonic Transducer (PMUT)
design. The approach unites large-scale
multiphysics simulation with an Al surrogate
model to accelerate design space exploration
and reveal performance trade-offs.

A dataset of 10,000 large-scale Finite Element
Method (FEM) simulations was generated by
randomly sampling four geometric design

parameters. A forward Al surrogate was trained

to predict four key performance indicators
(KPIs); transmit sensitivity, center frequency,
fractional bandwidth (FBW), and electrical
impedance at resonance. The trained model
achieved approximately 1% mean prediction
error and sub-millisecond evaluation time,

enabling rapid exploration of the design space.

As an example, it allows the Pareto front for

this multi-objective problem to be calculated in

seconds.

Keywords — Al; multiphysics; FEM (Finite
Element Method); cloud simulation; design

exploration; ai surrogate model; inverse design;

pareto front

Validated results demonstrate physically

realizable PMUT designs that simultaneously
increase fractional bandwidth and sensitivity
while maintaining a target centre frequency.

The workflow replaces manual, iterative design
loops with transparent, data-driven
exploration, empowering engineers to navigate
performance trade-offs efficiently and
confidently.

quanscient.com 3


https://eu1.hubs.ly/H0gXBym0

QUANSCIENT 2025

Introduction to Quanscient Allsolve

The cloud-based multiphysics simulation platform Quanscient Allsolve was used for all simulations

featured in the webinar.

Learn more at quanscient.com —

Quanscient Allsolve
¢ A cloud-based FEM platform for fast and scalable multiphysics simulations
e Developed by Quanscient, founded in 2021 in Tampere, Finland

e Enables fully coupled multiphysics simulations across all core physics domains

Trusted in both industry and academia
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Introduction to MultiphysicsAl for

PMUT design

PMUTs are critical components in biomedical
imaging, and a variety of other sensing applications.
Two key performance metrics are their sensitivity
and bandwidth, which govern image quality, and
resolution.

Traditional design workflows rely on sequential
simulation-build-test cycles. These cycles are labor-
intensive and offer limited visibility into global design
space. Engineers typically iterate locally, exploring
only a few design variations at a time.

MultiphysicsAl addresses this challenge by
combining scalable multiphysics simulation with Al.
The framework transforms conventional forward
modeling, predicting how a given design behaves,
into inverse design, systematically identifying which
designs best satisfy performance goals.

Challenges in PMUT design

Inverse design gap: Conventional solvers answer
the forward problem, “what does this design do?”,
rather than the inverse problem, “which designs
meet the target specification?” MultiphysicsAl
bridges this gap.

Trade-offs: PMUT design involves balancing
sensitivity and bandwidth, which are inherently
conflicting objectives, as improving one degrades
the other.

Scale and throughput: Large-scale multiphysics
simulations are computationally expensive, and
traditional parameter sweeps are infeasible at scale.

Frequency targeting: Design adjustments that
improve bandwidth often shift the center frequency.
Meeting strict targets (e.g., a specified centre
frequency) complicates manual optimization.

Verification and trust: Al-generated optima must be
validated through physical simulations to ensure that
they represent realizable designs rather than
numerical artifacts.
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Introduction to MultiphysicsAl for

PMUT design

Motivation for the simulation

Engineers require methods to explore
thousands of design options efficiently.
High-throughput, multiphysics simulation
can be used to generate a rich dataset,
which can be used to train Al surrogate
models. These Al surrogates can in turn
be used to create near-instant
predictions of device performance for
new configurations.

Quanscient Allsolve enables running
thousands of parallelized multiphysics
simulations in the cloud. This makes
Allsolve an ideal platform for developing
Al models that provide instantaneous
predictions and enable interactive,
interpretable design optimization.
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Fig. 1: PMUT example typical results
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MultiphysicsAl

Methods and models
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Fig. 2: PMUT example geometry

Model description

A circular PMUT was modeled using coupled

Geometry Physics Simulations Comimnan \.\’
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Simulation dataset

piezoelectric-structural-acoustic FEM physics, with
quarter-symmetry for efficiency. The problem was o

solved in the time domain, and the output

waveforms were then transformed to the frequency
domain and used to generate transmit sensitivity

and electrical impedance responses.

Design parameters

Four geometry variables define the design space:
1.Elastic membrane thickness
2.Piezo layer thickness

3.Cavity radius

4 .Bottom-electrode radius

Fig.

10,000 randomized geometries generated and
simulated in Quanscient Allsolve

Runtime: = 5 s per job, all parallelized

Outputs: transmit sensitivity, center frequency,
FBW, impedance

B Simulation dataset

3: Allsolve can generate large datasets for training Al models
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Methods and models

Surrogate modelling

A forward surrogate was trained (geometry - KPIs)
using the dataset.

e Training time ~ 10 min (GPU)
e Mean prediction error = 1 %
e Inference time < 1ms

Plotting a correlation matrix confirms intuitive
dependencies, e.g., cavity radius strongly influences
bandwidth, electrode radius affects impedance.
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Fig. 4: Input-output cross correlation plot Fig. 5: Output-output cross correlation plot
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Methods and models

Al surrogate model training

The neural surrogate model maps problem-specific
parameters, elastic membrane thickness,
piezoelectric layer thickness, cavity radius, and
bottom-electrode radius, to key performance
indicators (KPIs): transmit sensitivity, center
frequency, fractional bandwidth (FBW), and
impedance. The model architecture is a deep
residual feedforward neural network with Swish
activations, featuring adjustable hidden dimensions
and a configurable number of residual blocks

We split the dataset into 80% training and 20%
validation subsets. All inputs and outputs are
normalized using statistics computed from the
training set. The network is trained using the Adam

optimizer with an initial learning rate of 1x10-3, which

is reduced by a factor of 4 every 1000 epochs. We

use mean absolute error (MAE) as the loss function,

as it offers a balanced compromise between
minimizing root-mean-square error and relative
percentage error.

Throughout training, we monitor validation
performance and save the model checkpoint that
achieves the lowest validation loss.

To determine the optimal architecture, we perform
an initial neural architecture search that
progressively increases model complexity. The
search selects the simplest architecture that meets
predefined validation criteria during a short
preliminary training run. This chosen architecture is
then trained fully with the procedure described
above.

At inference time, inputs are normalized using the
training-set statistics, passed through the network,
and the predicted KPIs are denormalized using the
corresponding output statistics.
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Methods and models

Optimization and validation

In multi-objective optimization, the Pareto front is
the set of all Pareto efficient solutions. In essence, it
represents the set of the best possible performing
designs, as in order to improve one objective we
necessarily need to degrade others. Searching for
these solutions is typically a lengthy process as it's
highly iterative and often involves >100,000 FEM
simulations. However, in this work the Al surrogate
model was used to accelerate this process, allowing
the Pareto front to be calculated in a matter of
seconds. Once this Pareto front is calculated,
Allsolve can be used to quickly validate its
predictions. This provides engineers with confidence
that the designs identified are indeed realistic.

One of the main benefits of using an Al surrogate is
that the Pareto front analysis can be quickly rerun
with different parameters. These can include:
e Changes to the range over which input
parameters can be varied
o For example, to consider process restrictions
e Constraints on one or more of the output KPIs
o For example to constrain the operating
frequency to a specified value

Final design selections can then be based on the
desired performance balance, along with merits
such as manufacturability, electronics matching.

PMUT: Fractional bandwidth vs Tx sensitivity
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Fig. 6: Plot of the design space showing the tradeoff between the two main KPIs, including training data, Al generated Pareto

front and validation simulations.
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Results and discussion

Design-space insights

The Pareto front was calculated for the two main KPlIs:
transmit sensitivity and fractional bandwidth. The 600
designs along the Pareto front were then simulated in
Quanscient Allsolve, confirming that they are indeed
valid designs. The scatter plot below shows the
10,000 simulations from the training set, along with
the Al predicted Pareto front and the validation
simulations.

Results show that despite the large size and random
distribution of the training data set, the Pareto front
has identified better designs at every point in the
space. Furthermore, the validations confirm that the
Al surrogate is accurately predicting performance at
the extremities of the design space.

PMUT: Fractional bandwidth vs Tx sensitivity
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Surrogate accuracy

Parity plots indicate ~ 1 % mean deviation between
surrogate predictions and FEM outputs across all
KPls. The model delivers near-instant evaluation,
enabling engineers to explore thousands of
alternatives interactively.

Frequency-constrained optimization

Most ultrasonic sensors are designed with a specific
centre frequency in mind. By applying a 12 MHz
constraint to the centre frequency KPI and a new
Pareto front can be generated which contains only
designs centred at this frequency. Furthermore, the Al
surrogate allows this to be calculated within seconds.

Verified simulations show:

e FBW increase: ~65 % - ~100 %

e Sensitivity improvement: +2-3 dB re 1 Pa/V
e Center frequency stability: 12 MHz + 0.2 %

Pareto optimal design for 100% fractional bandwidth
sweep 0 « original design, sweep 1 = optimal 12 Mz design with w

T sensitivity (Parv)

1.008+3

o=

00a+7 1.50+7
Frequency (Hz)

Fig. 7: Design space with Pareto front and validation simulations constrained to 12 MHz (left). Initial design vs final design

(right, blue initial, green final).
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Benefits of MultiphysicsAl

The Quanscient MultiphysicsAl workflow delivers e The approach ensures confidence and physical
several tangible advantages for PMUT designers. fidelity, as all Al-predicted optima are verified
through complete Allsolve finite-element
e [t provides dramatic speed gains. Multi-objective simulations, confirming that the results
optimization that previously required days of correspond to realizable devices.
manual simulation and tuning can now be
completed within seconds. ¢ The workflow demonstrates strong scalability.
The same framework can be extended to
e [t offers full transparency. Instead of a single alternative geometries, material systems, or
black-box optimum, engineers can visualize the other multiphysics problems, establishing a
entire performance envelope and directly inspect generalizable foundation for data-driven
trade-offs between sensitivity, bandwidth, and engineering design.
frequency.

e As new design concepts are explored they can
be directly compared, not just for a single
design, but across the entire Pareto front.
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Fig. 8: Pareto fronts for multiple technology generations, showing relative strengths and weaknesses.

quanscient.com 12


https://eu1.hubs.ly/H0gXBym0

QUANSCIENT

2025

MultiphysicsAl
Conclusion

Quanscient MultiphysicsAl workflow unites high-
throughput multiphysics simulation with accurate Al
surrogate modeling to accelerate inverse design. It
transforms PMUT development from a slow, local
search into a fast, global exploration, reducing days
of manual iteration to seconds of guided, data-
driven analysis.

By combining physics-based simulation and
machine learning, the workflow uncovers the
achievable frontier between sensitivity and
bandwidth, supports strict frequency targets, and
delivers validated design candidates with full
physical verification through Allsolve. Early results
demonstrate significant improvements in fractional
bandwidth and measurable gains in sensitivity, all
achieved with minimal engineering overhead.

Beyond this PMUT case study, the same
MultiphysicsAl framework generalizes to other
device geometries, material stacks, and design
objectives, providing a scalable path toward
broader adoption across complex multiphysics
engineering domains.
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Key takeaways

—> Unified workflow: Quanscient —> Validated accuracy: Al-generated results
MultiphysicsAl integrates high- are verified through Allsolve simulations,
performance multiphysics simulation with ensuring confidence and physical fidelity.

Al to accelerate inverse design.

—> Data-driven insight: Thousands of - Rapid iteration: Multi-objective
simulations and a highly accurate optimization and frequency-specific
surrogate enable near-instant exploration design can be completed in seconds
of design trade-offs. instead of days.

—> Transparency and control: Engineers gain —> Scalable framework: The same approach
clear visibility into feasible performance extends to other devices, materials, and
boundaries and maintain full control over physics domains, paving the way for
design choices. future quantum-enhanced workflows.

Get in touch

Learn more and request a demo at
quanscient.com —

Dr. Andrew Tweedie

Co-CTO and Co-founder
andrew.tweedie@quanscient.com

Dr. Caglar Aytekin

Lead Al Developer
caglar.aytekin@quanscient.com
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