

Oligonucleotide Impurity Analysis Using Hydrophilic Interaction Chromatography (HILIC)

How-To Guide

WILEY

YMC
EUROPE GMBH

Contents

	Introduction	3
	Overview of Chromatographic Techniques	3
	Step 1: HILIC Column Selection	4
	Step 2: Mobile Phase Optimization	6
	Step 3: Gradient Optimization	9
	Step 4: Coupling with MS	12
	Summary and Outlook	14
	Further Reading & Resources	14

Cover image: iStock_ktsimage

Introduction

Oligonucleotides are synthetic DNA/RNA strands used in research and therapeutics, including PCR, gene editing, and antisense therapies. They are synthesized via solid-phase phosphoramidite chemistry, where nucleotides are sequentially added in a 3' → 5' direction. However, synthesis errors (e.g., incomplete coupling), side reactions, or degradation generate impurities such as **shortmers** (n-x deletions), **longmers** (n+x additions), and modified full-length products. These impurities can compromise therapeutic efficacy or diagnostic accuracy, necessitating robust analytical methods for characterization. Traditional techniques like ion-pairing reversed phase chromatography (IP-RP) and anion exchange chromatography (AEX) face limitations in sensitivity, selectivity, and MS compatibility. Hydrophilic interaction chromatography (HILIC) has emerged as a powerful orthogonal method, enabling high-resolution separation and mass spectrometry (MS)-compatible impurity profiling.

Overview of Chromatographic Techniques

TECHNIQUE	PRINCIPLE	STRENGTHS	LIMITATIONS
IP-RP	Separates based on hydrophobic interactions with ion-pairing agents (e.g., triethylamine-HFIP).	High resolution for small impurities.	Ion suppression in MS; corrosive mobile phases.
AEX	Separates via charge differences under high-pH conditions.	Orthogonal to IP-RP.	Usually incompatible with MS; requires desalting.
HILIC	Utilises hydrophilic partitioning with polar stationary phases.	MS-compatible; retains polar impurities.	Requires optimization of mobile phase/column chemistry.

Oligonucleotide Characterization Using HILIC

HOME

Step 1: HILIC Column Selection

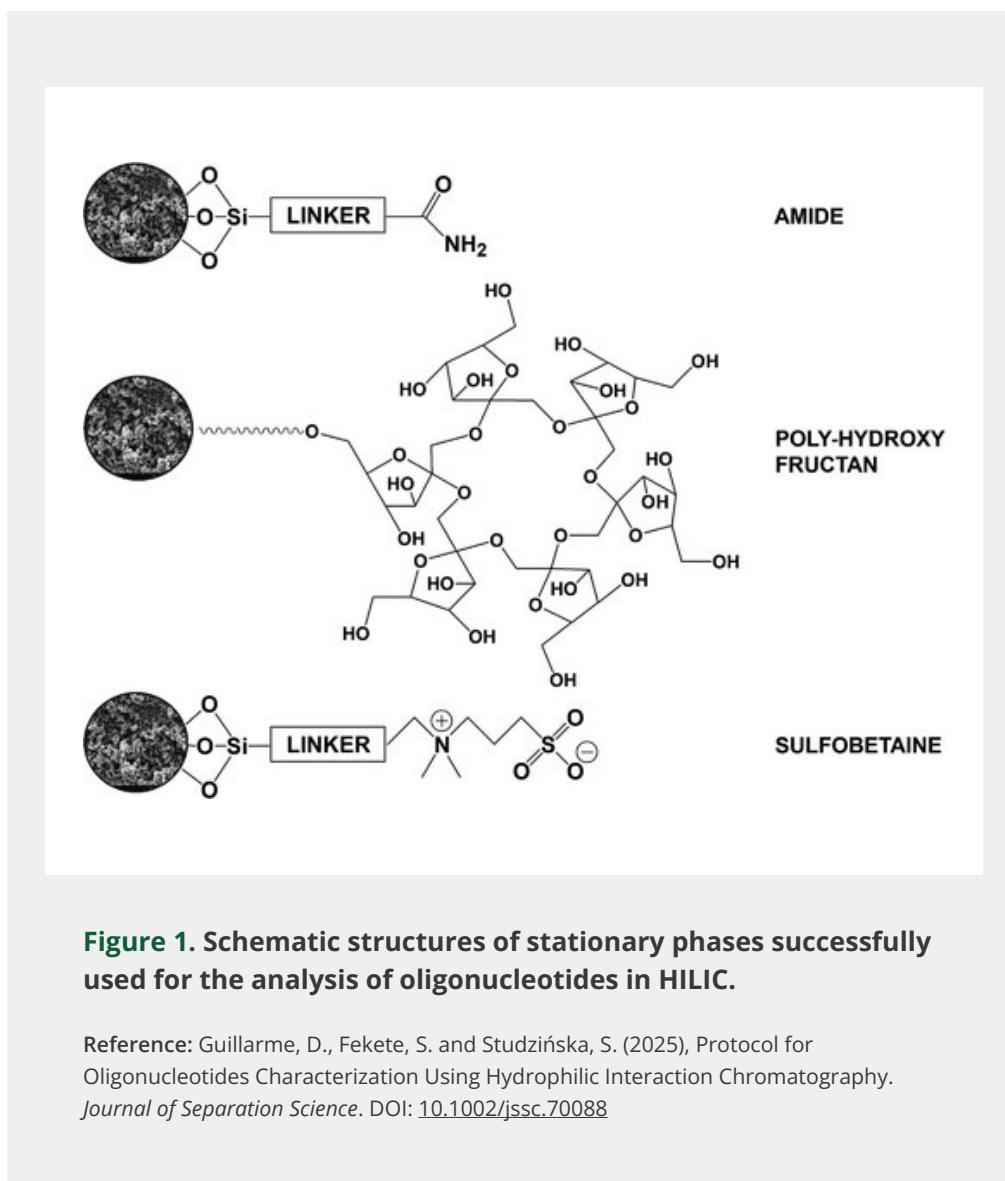
Key steps and considerations for selecting and using a stationary phase for Hydrophilic Interaction Liquid Chromatography (HILIC) analysis of oligonucleotides.

1 Hardware:

- ✓ Use **bioinert columns** (e.g., bioinert-coated) to minimize adsorption.
- ✓ For non-bioinert columns: Pre-condition with 10–25 sample injections to passivate surfaces.

2 Stationary Phase Chemistry:

- ✓ **Amide phases:** Well-suited for most ONs (modified/unmodified, siRNA, diastereomers).
- ✓ **Diol phases:** Complement amide phases and may also be effective for oligonucleotides, providing partial diastereomer separation.
- ✓ **Zwitterionic phases:** Suitable for unmodified ONs but require high salt concentrations.


3 Dimensions & Particle Size:

- ✓ **Diameter:** 2.1 mm (standard).
- ✓ **Length:** 50 mm (fast analysis), 100 mm (high resolution), 150 mm (impurity separation).
- ✓ **Particles:** <2 µm for UHPLC; 2.7–5 µm for HPLC.

4

Pore Size:

- ✓ Short ONs (<30-mer): 100–130 Å.
- ✓ Long ONs (>30-mer): 300 Å or larger.

Figure 1. Schematic structures of stationary phases successfully used for the analysis of oligonucleotides in HILIC.

Reference: Guillarme, D., Fekete, S. and Studzińska, S. (2025), Protocol for Oligonucleotides Characterization Using Hydrophilic Interaction Chromatography. *Journal of Separation Science*. DOI: [10.1002/jssc.70088](https://doi.org/10.1002/jssc.70088)

Step 2: Mobile Phase Optimization

1 Select Salt Type and Concentration

Primary choice: 50 mM ammonium acetate (pH ~6.9).

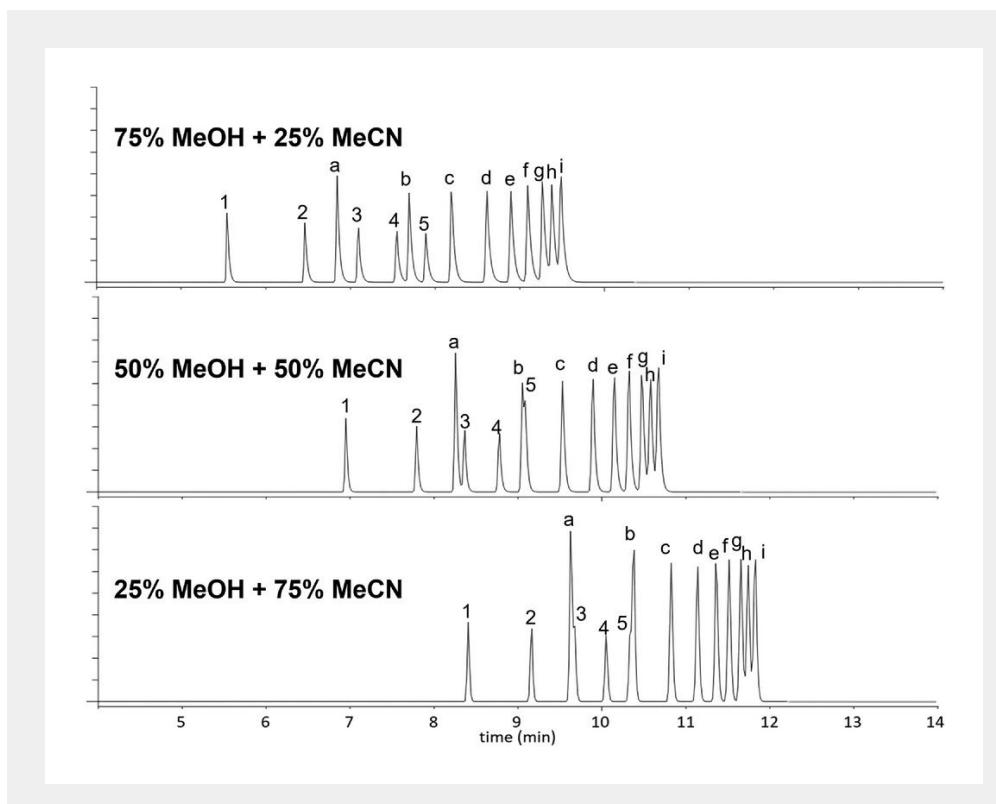
- Balances chromatographic performance, MS compatibility, and robustness.
- Avoid concentrations <40 mM to prevent retention variability or breakthrough effects.

Alternatives:

- **Ammonium formate** (pH ~6.4) for similar results.
- **Ammonium bicarbonate** (pH ~7.8) for slightly better resolution of long ONs (e.g., ssDNA ladders).

Phosphorothioate ONs: Use ≤ 50 mM salt to suppress partial diastereomer separation.

2 Adjust Mobile Phase pH


Optimal range: pH 5–7 to minimize nonspecific adsorption.

- Avoid acidic pH (<6) to prevent electrostatic interactions with metal surfaces.
- For silica columns: Stick to pH 6–7 to avoid column degradation.
- For hybrid silica columns: Higher pH (up to 9) can reduce adsorption but test column stability.

3 Choose Organic Modifier

HOME

- ✓ **Primary solvent: Acetonitrile (ACN).**
 - Ensures hydrophilic partitioning and sharp peaks.
- ✓ **Ternary mixtures:** Add **5-25% methanol** to ACN/water to fine-tune selectivity (e.g., separate ON ladders).
 - Note: Methanol may broaden peaks but improves resolution for complex mixtures.

Figure 2. Comparison of different ternary mobile phase compositions (methanol in acetonitrile).

Reference: Guillarme, D., Fekete, S. and Studzińska, S. (2025), Protocol for Oligonucleotides Characterization Using Hydrophilic Interaction Chromatography. *Journal of Separation Science*. DOI: [10.1002/jssc.70088](https://doi.org/10.1002/jssc.70088)

4 Set Temperature

- ✓ **Default: 40°C** (balances retention, selectivity, and column stability).
- ✓ **Adjust based on sample:**
 - **Double-stranded ONs (e.g., siRNA):** Set temperature above/below melting point to analyze duplexes or single strands.
 - **Diastereomers:** Use **<25°C** to enhance separation or **>60°C** to suppress it.
 - **High-temperature stability:** Use hybrid silica columns for temperatures up to 90°C.

5 Optimize Flow Rate

✓ Standard: 300–400 $\mu\text{L}/\text{min}$ for 2.1 mm columns.

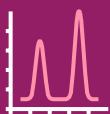
- Lower flow rates (e.g., 200 $\mu\text{L}/\text{min}$) improve resolution but increase run time.
- Ensure consistent flow/pressure for method robustness (retention decreases with higher pressure in HILIC).

6 Method Validation & Troubleshooting

✓ Peak broadening:

- Increase salt concentration (up to 100 mM).
- Reduce methanol content in ternary mixtures.

✓ Retention variability:


- Ensure consistent pH (5–7) and salt concentration.
- Use plastic solvent bottles.

✓ Low resolution:

- Adjust temperature (see **Step 4**).
- Test ternary mobile phases (ACN/MeOH/water).

Summary Table: Recommended Mobile Phase Conditions

PARAMETER	RECOMMENDATION
Salt	50 mM ammonium acetate (pH 6.9)
Organic Modifier	ACN (primary), $\leq 25\%$ methanol (selectivity tweak)
Temperature	40°C (adjust for duplexes/diastereomers)
Flow Rate	300–400 $\mu\text{L}/\text{min}$ (2.1 mm columns)
Containers	Plastic (PFA)

Step 3: Gradient Optimization

1 Start with a Generic Gradient

✓ Initial conditions:

- **Mobile Phase A:** Acetonitrile (ACN)
- **Mobile Phase B:** Aqueous buffer (e.g., 50 mM ammonium acetate, pH 6.9)
- **Gradient range:** 70% ACN (initial) to 10% ACN (final).

✓ Gradient time:

- **Standard:** 10 minutes for a 50 × 2.1 mm column at 400 µL/min.
- Adjust proportionally for longer columns (e.g., 20 minutes for a 100 mm column).

2 Refine Gradient Parameters

✓ Adjust initial/final ACN %:

- **Early eluters:** Start with lower ACN (e.g., 60% instead of 70%).
- **Late eluters:** End with lower ACN (e.g., 5% instead of 10%).

✓ Extend gradient time:

- For complex mixtures (e.g., ONs with closely related impurities), increase gradient time to improve resolution (e.g., 15–25 minutes).

✓ Test gradient shape:

- **Linear gradients:** Simple and effective for most ONs (Figure 5A,B).
- **Concave gradients:** Improve separation of homologs (e.g., ONs and shorter impurities) for uniform peak distribution (Figure 5C).

3 Optimize Column Dimensions

- ✓ **Short columns (50 mm):** Fast analysis (5–10 minutes) but lower resolution.
- ✓ **Long columns (100–150 mm):** Higher resolution for complex samples (e.g., diastereomers, impurities).

4 Consider Premixed vs. Neat Mobile Phases

- ✓ **Premixed phases:**
 - **Pros:** Reduce baseline noise, heat effects, and precipitation risks.
 - **Use case:** LC-UV methods.
- ✓ **Neat phases (ACN + aqueous buffer):**
 - **Pros:** Minimize leachable impurities for LC-MS compatibility.
 - **Cons:** Slightly lower robustness due to evaporation effects.

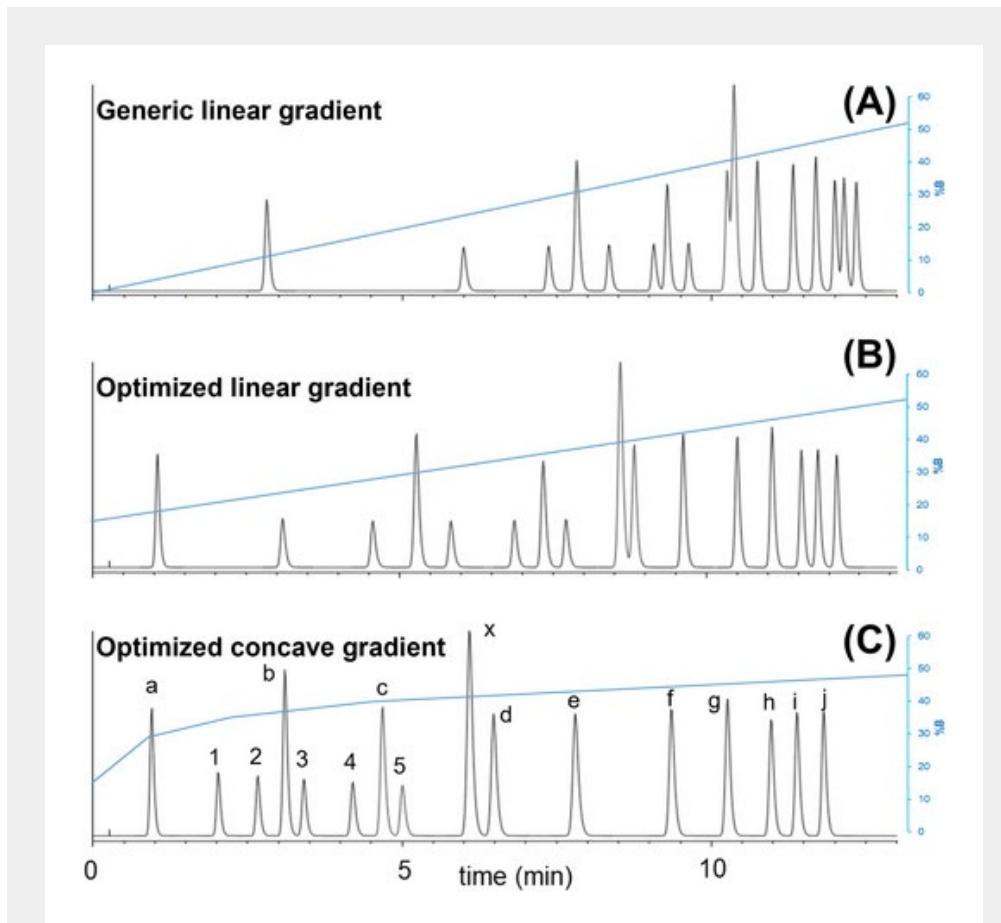
5 Set Re-Equilibration Time

- ✓ **Minimum:** 15 column volumes (e.g., ~5 minutes for a 50 × 2.1 mm column at 400 µL/min).
- ✓ **Reduce time:**
 - Start gradients with ≥20% water.
 - Increase temperature (e.g., 50°C).

6 Troubleshoot Common Issues

Poor resolution:

- Reduce gradient steepness (e.g., 1% ACN/min instead of 6%).
- Switch to a concave gradient.


Long run times:

- Shorten column length or increase flow rate (ensure pressure limits are respected).

Irreproducible retention:

- Extend re-equilibration time.
- Use plastic solvent containers (PFA) instead of glass.

Figure 3. Comparison of various gradient conditions.

Reference: Guillarme, D., Fekete, S. and Studzińska, S. (2025), Protocol for Oligonucleotides Characterization Using Hydrophilic Interaction Chromatography. *Journal of Separation Science*. DOI: [10.1002/jssc.70088](https://doi.org/10.1002/jssc.70088)

Step 4: Coupling with MS

1

Ionization Setup: Electrospray Ionization (ESI) in Negative Mode

Preferred ion source: Use ESI(–) for ONs due to their polyanionic nature.

Charge states:

- Expect **–3 to –5 charges** for 15–25-mer ONs.
- Fewer charge states compared to IP-RPLC, simplifying spectra.

Advantages over IP-RPLC:

- No ion-pair reagents (e.g., alkylamines), reducing MS contamination and maintenance.
- Mobile phases are stable for days (vs. hours for IP-RPLC).

2

Mobile Phase Optimization for MS

Salt Selection:

- **Primary choice:** 50 mM ammonium acetate (pH 6.8–6.9).
- **Alternatives:**
 - **Ammonium formate:** Similar performance to acetate.
 - **Ammonium bicarbonate:** Potential for higher sensitivity (untested in HILIC).
- **Avoid low salt concentrations** (<10 mM) to prevent peak broadening.

Organic Modifier:

- Use **acetonitrile (ACN)** as the primary solvent.
- Avoid methanol-heavy mixtures (causes peak broadening).

pH Considerations:

- Maintain **pH 6–7** to balance sensitivity and reduce adducts.
- Slightly alkaline pH improves ionization but risks column stability.

3 Addressing Sensitivity Challenges

Reduce Adducts:

- **Use plastic containers** (PFA) instead of glass to minimize sodium/potassium leaching.
- **Desalting steps:** Include offline purification if adducts persist.

Flow Rate Adjustments:

- **Standard:** 300–400 $\mu\text{L}/\text{min}$ for 2.1 mm columns.
- **For nano-ESI:** Lower flow rates (nanoflow) can triple sensitivity but require specialized equipment.

Salt Concentration Trade-Off:

- Higher salt ($\geq 50 \text{ mM}$) improves resolution but suppresses signals.
- Lower salt (10–40 mM) boosts sensitivity at the cost of peak shape.

4

MS Parameter Recommendations

General Settings:

- **Mass range:** 400–3000 Da (covers most multiply charged ONs).

- **Capillary voltage:** ~4000 V (adjust based on instrument).

- **Gas settings:**

- Drying gas: 10–12 L/min at 350°C.

- Nebulizer pressure: 20–30 psi.

- **Fragmentor voltage:** 150–200 V (balance between sensitivity and fragmentation).

Instrument-Specific Tips:

- Regularly clean ion sources to offset residual salt buildup.
- Optimize declustering voltages to reduce in-source fragmentation.

Summary and Outlook

HILIC enhances oligonucleotide impurity analysis by enabling MS-compatible separations, resolving polar impurities, and simplifying 2D-LC workflows. Its synergy with HRAM-MS allows precise identification of low-abundance species ($\leq 0.3\%$). Future advancements may focus on **automated column-switching systems** and **AI-driven impurity prediction** to reduce method development time. Emerging techniques like supercritical fluid chromatography (SFC) show promise for impurity separation but require further validation. As oligonucleotide therapeutics advance, robust HILIC-MS workflows will remain critical for ensuring product safety and regulatory compliance.

Further Reading & Resources

1. [HILIC analysis of oligonucleotides using bioinert columns](#)
2. [When HILIC is a suitable alternative to IP-RP for the analysis of oligonucleotides](#)
3. [Determination of optimum method parameters for the analysis of oligonucleotides via HILIC](#)

Copyright statement: The content of this How-to Guide is based on the following article:

Guillarme, D., Fekete, S. and Studzińska, S. (2025), Protocol for Oligonucleotides Characterization Using Hydrophilic Interaction Chromatography. *Journal of Separation Science*. DOI: [10.1002/jssc.70088](https://doi.org/10.1002/jssc.70088)

Imprint

© Wiley-VCH GmbH, Boschstr. 12, 69469 Weinheim, Germany
Email: info@wiley-vch.de

WILEY

YMC
EUROPE GMBH