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Abstract

Embodied Artificial Intelligence (EAIl) integrates perception, action, memory, and learning to
enable autonomous systems to dynamically interact with and learn from their environments. While
large language models have revolutionized generative Al, the next frontier will be applying EAI
principles to robotics, drones, and interconnected systems. This paper explores how EAI can
transform drone and drone-swarm development, with a focus on enhancing their security,
resilience, and safety. EAI lets drones actively perceive, adapt to, and learn from real-world
scenarios, addressing critical challenges confronting unmanned aerial systems, such as threat
detection, dynamic decision-making, and swarm coordination. We also examine recent
innovations in multimodal large models (MLMs), their potential to unify EAI processes, and the
challenges that developers must overcome to win broader adoption. Ultimately, this work
highlights how EAI can empower drones to operate more effectively in complex, unpredictable
environments.




Intro

Conventional Al research utilizes large datasets to look for patterns for classification and
regression; time-dependent information plays a minor role. In contrast, the Embodied Al (EAI)
teaches autonomous systems to learn by interacting with their dynamic environment—much as
living animals adapt to ever-changing environments, actively exploring their surroundings and
modifying incoming data to enhance clarity, facilitate learning, improve memory retention, and
stay aware of possible threats. EAIl is an old field that dates back to early work on robots.’
However, today, EAI is a patchwork of different tools, algorithms, and processes that improve
how these systems perceive, act, remember, and learn.

Conventional Al Embodied Al

Static datasets (text, images, structured

Data Source

Dynamic environments (sensor feeds, real-time data)

data)
Learning Approach Pattern recognition and regression Interaction-based learning (active exploration)
Context Disembodied, often abstract Grounded in real-world, physical context
Interaction with None, operates in a virtual/abstract - ) . . )
" Active interaction with physical environments
Environment space
Applications Chatbots, ﬁnan_(:lal sys?ems, Humanoid robots, autonom_ous cars, drones, smart
recommendation engines factories
Limited adaptability to dynamic, real- Handling uncertainty, dynamic scenarios, real-world
Challenges ; ) >
world scenarios unpredictability

Table 1: Comparison of Conventional Al vs Embodied Al

Drones, especially in swarm configurations, operate in highly unpredictable environments where
static Al models may struggle. For example, security drones monitoring large-scale infrastructure
must continuously assess threats, coordinate responses, and adapt to changing conditions.
Traditional Al methods, which rely on pre-processed datasets and static decision-making, often
falter in these circumstances. EAI, on the other hand, enables drones to process real-time sensor
data, collaborate intelligently within the swarm, and autonomously refine their strategies to
respond to new threats.

Drone systems’ transition to EAI parallels the evolution of natural language processing before the
rise of generative Al. Before large language models (LLMs) emerged, researchers relied on their
own patchwork methods--from hand-coded symbolic Al to recurrent neural networks--to process
and interpret text. LLMs revolutionized the field by unifying these approaches, making Al systems
significantly more capable. Similarly, multimodal large models (MLMs) for EAI could unify
perception, action, memory, and learning, thus, allowing drones to develop more sophisticated
decision-making abilities in security-sensitive environments.

We are now on the crest of a similar wave of innovation with the advent of multimodal large
models (MLMs) for embodied Al. MLMs could similarly unify and simplify embodied Al models

" Brooks, R.A., 1991. Intelligence without representation. Artificial intelligence, 47(1-3), pp.139-159.
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across traditionally disparate processes, unifying perception, action, and memory. Innovations in
MLMs allow agents to learn from the way they perceive the world and act in it, rather than depend
solely on the words humans have written. These MLM algorithms may also hallucinate less, since
they train on direct experience in context, rather than on context-less, disembodied data. This
advance will accelerate the growth of the estimated multi-trillion-dollar market for humanoid
robots, drones, autonomous cars, and more competent enterprise systems.

Embodied Al agents may run directly on autonomous systems or as parts of a distributed
processes, such as swarm or edge computing infrastructure. Autonomous humanoid robots with
eyes, feet, and hands are undoubtedly impressive. However, Al-embodied cars, drones?, and
autonomous labs already exist—as do less-embodied social media Al (SMAI) recommendation
systems, game players, and worker-scheduling systems.

The latter, less-embodied applications deliver some of today’s best results; perhaps because they
are so disembodied, they are easier to train for simple goals. They can also miss out on important
context that could raise ethical issues, however. For example, SMAI may increase user
engagement at the cost of increasing hate speech or social dissent, which are hard to quantify.
Similarly, worker-scheduling systems may increase throughput at the expense of workers'
physical and mental health.

What is embodied Al?

There are many ways to embody Al in more autonomous, dynamic learning systems. Robots and
autonomous cars tend to attract the most attention: humanoid robots can perform many human
tasks using tools designed for humans, and we all drive cars when we might prefer not to. Unlike
robots and cars, drones operate in highly dynamic, three-dimensional environments, requiring
even more adroit real-time perception, decision-making, and coordination. This makes drones the
ideal platform for exploring and advancing the principles of embodied Al.

Much EAI research has focused on vision-language models that enable robots and vehicles to
interpret and interact with simplified 3D worlds. However, some of the most impressive EAI
systems are surprisingly simple.® For example, social media Al (SMAI) algorithms, which optimize
content and ad recommendations, have grown into a multi-billion-dollar industry. Similarly,
autonomous gaming algorithms have achieved superhuman performance in games like Chess,
Go, and StarCraft. In contrast, more complex EAI systems for robots, cars, and drones are
progressing more slowly, thanks largely to the challenges of the unpredictable, real-world
environment.

Underneath all these applications—and potential applications—lies the embodied system. And
the foundation of the embodied system is its training process. Figuring out how to industrialize
and automate training is a primary challenge. This involves unifying key capabilities, which are
today often treated separately for drones and swarms. Thus, the four essential EAl components,

2 Kourav, Sateesh, Kirti Verma, and M. Sundararajan. "Atrtificial Intelligence Algorithm Models for Agents of Embodiment for
Drone Applications." Building Embodied Al Systems: The Agents, the Architecture Principles, Challenges, and Application
Domains. Cham: Springer Nature Switzerland, 2025. 79-101.

3 Paolo, Giuseppe, Jonas Gonzalez-Billandon, and Balazs Kégl. "Position: a call for embodied Al." Forty-first International
Conference on Machine Learning. 2024.
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too often trained individually, but could be trained together and faster with the right approach. The
supporting pillars of EAIl include:

Perception

Perception is the agent’s ability to sense its environment. This requires transforming raw sensor
data into an actionable format. For drones, this means correlating and fusing inputs from GPS,
inertial measurement units (IMUs), radio frequency (RF) signals, thermal imaging, LIiDAR, and
onboard cameras. These data streams allow drones to navigate, detect threats, and adjust flight
paths dynamically. Promising innovations like neural radiance fields* (NeRFs, which can build 3D
scenes from incomplete sets of 2D images) and Gaussian splats® (which can display volumes
without first converting the data into surfaces or lines) suggest more efficient ways of capturing
and distilling more efficient 4D (space and time) representations of real-world experiences.

Action

Action refers to the agent’s ability interact with and change its environment. For drones, actions
can be categorized into reactive and goal directed. Reactive actions, such as stabilizing flight in
turbulent conditions or avoiding sudden obstacles, critical for self-preservation and must be
instantaneous. Goal-directed actions, on the other hand, involve higher-level decision-making,
such as planning a route or coordinating with other drones in a swarm. These different types of
actions benefit from many Al techniques. For example, reflexive actions improve more with model-
free reinforcement learning methods, which learn first principles from scratch. In contrast, goal-
directed actions do better with model-based reinforcement learning approaches that start with
models of the world.

Memory

Memory characterizes an agent’s ability to retain essential elements of past experiences. There
are many different approaches to this, including retaining raw data, semantic descriptions that
summarize crucial elements for various tasks, and episodic aspects that might remind us that
touching a fire is not a good thing. Efficient memory management is crucial, as drones must
process vast amounts of data while operating in real-time. Keeping track of everything in a data
stream requires considerable overhead. Neural network approaches show promise for efficiently
condensing experiences into weights and features. Combining multiple approaches—various
efforts to do this are underway—could simplify might remind us that touching a fire is not a good
thing. Efficient memory management is crucial, as drones must process vast amounts of data
while operating in real-time. Keeping track of everything in a data stream requires considerable
overhead. Neural network approaches show promise for efficiently condensing experiences into
weights and features. Combining multiple approaches—various efforts to do this are
underway—could simplify processes for remembering different levels of detail. For example,

4 Mildenhall, Ben; Srinivasan, Pratul P.; Tancik, Matthew; Barron, Jonathan T.; Ramamoorthi, Ravi; Ng, Ren (2020). "NeRF:
Representing Scenes as Neural Radiance Fields for View Synthesis". In Vedaldi, Andrea; Bischof, Horst; Brox, Thomas; Frahm,
Jan-Michael (eds.). Computer Vision — ECCV 2020. Lecture Notes in Computer Science. Vol. 12346. Cham: Springer
International Publishing. pp. 405-421. arXiv:2003.08934. doi:10.1007/978-3-030-58452-8_24.

5 Westover, Lee Alan (July 1991). "SPLATTING: A Parallel, Feed-Forward Volume Rendering Algorithm"
https://articles.tomasparks.name/publications/Westover1991.pdf
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retrieval augmented generation®’ (RAG), a GenAl technique for retrieving and incorporating
new information, combined with LLMs show promise in pulling up the most relevant memory
traces to improve accuracy. A similar approach might improve MLMs as well.

Learning

Learning involves developing algorithms that integrate experiences to form new knowledge and
abilities. Continuous, dynamic learning is essential for drones operating in unpredictable
environments. This is a long-term goal. Research has made considerable progress towards deep
reinforcement learning (deep RL, which allows systems to use unstructured data to reach
decisions), particularly for achieving simple objectives. However, RL requires significant effort and
expertise to define appropriate policies for more complex real-world scenarios. Newer algorithms
derived from psychology might help overcome these limitations: active inference® (using Bayesian
statistics) and intrinsic motivation® (aimed at reducing “surprising” results). Also, the multi-layered
perceptron networks that underlie most existing approaches can suffer from catastrophic
forgetting (sudden, drastic loss of previously learned information or behavior) or learning from
non-stationary data (drawing valid operating assumptions from information that changes over
time) while interacting with the environment. Advances in neural network architectures, such as
Kolmogorov-Arnold Networks (KAN)'® and improved world simulators'', may help drones develop
more robust representations of their experiences, reducing such issues.

6 Gao, Yunfan; Xiong, Yun; Gao, Xinyu; Jia, Kangxiang; Pan, Jinliu; Bi, Yuxi; Dai, Yi; Sun, Jiawei; Wang, Meng; Wang, Haofen
(2023). "Retrieval-Augmented Generation for Large Language Models: A Survey". arXiv:2312.10997

7 "What is retrieval-augmented generation?". IBM. 22 August 2023. Retrieved 7 March 2025.
https://research.ibm.com/blog/retrieval-augmented-generation-RAG

8Sajid N, Ball PJ, Parr T and Friston KJ, "Active Inference: Demystified and Compared," in Neural Computation, vol. 33, no. 3,
pp. 674-712, March 2021, doi: 10.1162/neco_a_01357.

® Tanneberg, Daniel, Jan Peters, and Elmar Rueckert. "Intrinsic motivation and mental replay enable efficient online adaptation
in stochastic recurrent networks." Neural networks 109 (2019): 67-80.

0 Lju, Ziming, et al. "Kan: Kolmogorov-Arnold networks." arXiv preprint arXiv:2404.19756 (2024).

" “How Al is improving simulations with smarter sampling techniques.” MIT News | MIT, 2 Oct. 2024, news.mit.edu/2024/how-
ai-improving-simulations-smarter-sampling-techniques-1002., Retrieved 7 March 2025
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Figure 1: Main components of Embodied Al

Building on GenAl gains

Recent progress in embodied Al (EAI) builds on the phenomenal success of recent gains by
generative Al (GAI). Both approaches strive to improve various processes for making sense of
unstructured data, such as text, with LLMs or sensor data in embodied Al systems. However, a
key distinction lies in the data they process. While generative Al models, such as large language
models (LLMs), typically train on static datasets that require expensive retraining to update,
embodied Al systems learn from dynamic, real-time sensor data and the outcomes of their
actions. This learning-by-doing can occur through simulations or direct interactions in the field,
making EAI particularly well-suited for applications like drones, which operate in unpredictable,
ever-changing environments.

Aspect Embodied Al

Focus Text and static data Sensor and dynamic data

Applications NLP, chatbots, coding assistants Robots, drones, autonomous systems

Challenges Hallucinations in LLMs, limited real-world Dynamic, real-world uncertainty, handling sensor noise
context

Table 2: Comparison of Generative Al vs Embodied Al

Despite these differences, several aspects of GenAl progress inform the development of more
capable embodied Al models. At a high level, these include 1) new methods for discovering
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correlations in large, unstructured data sets; 2) automating processes for learning from extensive
unstructured data sets; 3) new methods for generating synthetic data; 4) innovations in user-
experience design; 5) new approaches to improving precision and accuracy; and 6) multimodal
approaches for correlating relationships across different types of data.

For drones, these advancements are not just theoretical; they have practical implications for
security, resilience, and safety. For example, when trained on synthetically generated data,
drones can learn to handle rare but critical challenges, such as navigating smoke-filled
environments or avoiding collisions in dense urban areas. Similarly, multimodal approaches can
enhance a drone’s ability to detect and respond to threats in real-time, such as identifying
unauthorized drones or tracking suspicious activities.

1) New methods for discovering correlations in large unstructured data sets

Before recent innovations in transformers (a deep learning coder-decoder technique that
incorporates an attention function) , GANs (Generative Adversarial Networks), and diffusion
models (which synthesize new data points with the same distribution as the base data),
considerable human effort was required to organize and structure unstructured information like
text, code, images, audio, and raw sensor feeds into a format suitable for Al and ML training. New
GenAl algorithms like these can automatically capture essential correlations. For example, the
seminal paper on transformers suggested that “attention is all you need”'? to build a more
competent translator. This allowed transformers to automatically map words, entities, and
concepts into vector embeddings directly, rather than the hand-coding required by earlier
approaches like Word2Vec'® and GloVe.'* Similar techniques could help automate embeddings
across the perceive, act, remember, and learn loops in embodied Al. For instance, drones could
use transformer-based models to process real-time sensor data to identify obstacles or detect
anomalies in their surroundings.

2) Automating processes for learning from extensive unstructured data sets

Early work on generative Al (GenAl) algorithms focused on relatively simple tasks, such as
language translation and text generation. OpenAl’s groundbreaking insight was that scaling these
algorithms with vast datasets could enable advanced applications like chatbots, coding
assistants, copilots, and even systems capable of generating audio, images, and video. Similarly,
Embodied Al has the potential to scale effectively by training on diverse datasets that capture the
experiences of comparable agents or through simulations that accurately model complex
environments. These environments could include 3D worlds, physical dynamics, wireless signal
propagation, and scenarios emphasizing safety, resilience, and security. For example, while
roboticists have made significant progress in teaching robots to walk using basic physics models,
future advancements will require finer-grained models to tackle more nuanced tasks. These could
include teaching drones to navigate complex terrains, inspect infrastructure, or coordinate in
swarms for search-and-rescue missions.

3) New methods for synthetic data generation
Current GenAl models are often too large and computationally intensive for real-time tasks, but
they do excel at generating synthetic data for training smaller, faster models. In cybersecurity, for

2 Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).
3 word2vec. (n.d.). TensorFlow. https://www.tensorflow.org/text/tutorials/word2vec , Accessed 27/02/2025

4 Pennington, Jeffrey, Richard Socher, and Christopher D. Manning. "Glove: Global vectors for word representation."
Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 2014.
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example, synthetic data is used to improve fault detection, malware identification,'®> and intrusion
prevention. Similarly, synthetic data can enhance embodied Al by creating diverse drone-training
scenarios, such as simulating adverse weather conditions, sensor failures, or adversary attacks.

4) Innovations in user experience design

Large language models can also summarize complex information for several types of users and
expand simple prompts into command appropriate for multiple systems. For example, the Tll has
been developing a natural language interface on top of the Falcon LLM'® that allows humans to
verbally create complex control programs for a swarm of robots, allowing (for example) voice
control for monitoring the perimeter of an event. Similar advances improve the drone user’s
experience, letting operators issue high-level commands like "inspect the bridge for structural
damage" or "search for survivors in the disaster zone." Vision-language models can enhance
drone interfaces with intuitive visual feedback and seamless human-drone collaboration.

5) New approaches to improving precision and accuracy

LLMs’ tendency to hallucinate with complete confidence is a growing concern—particularly in
edge cases or when describing things that under-represented in their training data. Techniques
for reducing hallucinations and improving accuracy and precision and reducing hallucinations
have included 1) fine-tuning LLMs for specific use cases; 2) priming LLMs with a subset of the
most relevant data using retrieval augmented generation (RAG); 3) using GraphRAG'” to prime
the model with a knowledge graph that represents the relationship between entities in in the data;
and 4) refining results using special-purpose transformers or LLMs to decompose unstructured
data in entities, relationships, and properties. These approaches can also improve embodied Al
by refining how drones process raw sensor data. For example, a drone’s camera feed could be
distilled into precise representations of relevant entities (such as people, infrastructure, or fires)
and their characteristics. This would enhance the drone’s ability to make accurate decisions in
real-time, such as identifying threats or prioritizing tasks during a mission.

6) Multimodal approaches for correlating relationships across different types of data

The first generation of GenAl algorithms was trained on a single data modality, such as text alone
or images alone. Researchers have developed ways of training algorithms (transformers, for
example) on multiple modalities of data, such as text, audio, video, sensor data, or robot
instructions. Training a new language model from scratch requires considerable time and
computing, so initial R&D on fusing new data modalities into existing LLMs could have a
substantial payoff. Recent progress has focused on combining modalities at training time; this
can produce better correlations across modalities in the vector embedding space. For example,
method allowed voice-chat assistants (notably OpenAl's GPT-40'8) to learn the rhythms,
cadence, and prosody of human speech, rather than just the text and its audio equivalent.
Robotics researchers have found that similar approaches can help to train more competent
robotic controllers that can manage multiple robot models.' Similar approaches promise better
embodied Al models that 1) work across several models of drones, robots, and cars; 2) correlate

5 G. Gebrehans et al., "Generative Adversarial Networks for Dynamic Malware Behavior: A Comprehensive Review,
Categorization, and Analysis" in IEEE Transactions on Atrtificial Intelligence, 2025

'6 Falcon 3: UAE’s Technology Innovation Institute launches world’s most powerful small Al models that can also be run on light
infrastructures, including laptops. (2024, December 17). https://www.tii.ae/news/falcon-3-uaes-technology-innovation-institute-
launches-worlds-most-powerful-small-ai-models

7 Microsoft, “Welcome to GraphRAG,” https://microsoft.github.io/graphrag/. Accessed 19/03/2025
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insights across models used to improve the safety, security, and resilience in these systems; and
3) communicate with humans about their experiences and decisions.

Embodied Al algorithms

At a high level, embodied Al and generative Al provide frameworks for drones to learn by
interacting with physical or simulated worlds. These models can also help integrate and
synthesize insight and action from multiple sensors. Some types of embodied Al can learn from
their interactions with more ephemeral systems. For example, algorithms may also learn how to
interpret and adapt to security threats. They can take steps to shore up networking channels,
modify how they interpret information arising from malicious GPS attacks, or change the way they
communicate with other members in a fleet partially composed of drones. Multiple classes of
algorithms can improve feedback-based dynamic learning improve decision-making, adaptability,
and functionality.

Here are a few examples:

Reinforcement learning (RL) is the status quo in most embodied and agentic Al research. It has
delivered impressive results by beating the top Go and StarCraft?® players. Human effort is also
required to specify the policies that optimize results, which may then suffer from human biases.
For drones, RL can optimize navigation, obstacle avoidance, and swarm coordination. Still, its
effectiveness depends on the quality of the reward design and its ability to handle real-world
unpredictability.?’

Agent

Observation m Action

Policy
Update

RL Algorithm

Reward

Environment

Figure 2: Reinforcement Learning Algorithm

Active Inference: These approaches attempt to maximize the “free energy” of a physical system.
In this context, the free energy principle posits that the brain minimizes uncertainty or unexpected
outcomes by generating predictions through internal models and refining them with sensory
data.?? The basic concept was deriving from physics and suggests how systems can become
more efficient and adapt under novel and uncertain conditions. In other words, how can a physical
system adjust its responses to new information in a way that increases its ability to adapt in the

8 OpenAl, GPT-40, https://openai.com/index/hello-gpt-40/ Accessed 28/02/2025

19 Li, Xiaoqi, et al. "Maniplim: Embodied multimodal large language model for object-centric robotic manipulation." Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

20 Vinyals, Oriol, et al. "Starcraft |l: A new challenge for reinforcement learning." arXiv preprint arXiv:1708.04782 (2017).

21 Azar, Ahmad Tabher, et al. "Drone deep reinforcement learning: A review." Electronics 10.9 (2021): 999.

22 Lanillos, Pablo, et al. "Active inference in robotics and artificial agents: Survey and challenges." arXiv preprint
arXiv:2112.01871 (2021).
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future? This is a newer concept. It is not as well-studied as RL, but it does show promise in
teaching systems to learn with less manual effort. While still an emerging field, active inference
shows promise for enabling drones to operate in dynamic environments, such as disaster zones
or contested airspace, where conditions can change rapidly and unpredictably.

Agent
Baliafs or modals Dbservation Policy
adaptingto i pre
raduce ST aerca Policy
uncertainty & Update

RL Algorithm

Internal Free Energy External
States Minimization States
Evaluation

Infer the best actions by imagining their consequences in Environment
terms of future states and observations

Figure 3: Active Inference Algorithm

Intrinsic motivation: This approach trains Al systems to be more curious.? It is an even newer
new concept than RL and active inference. This third technique suggests new ways to guide
intrinsically motivated behaviors to developing more supple Al systems. This approach is
particularly useful for drones operating in unknown or unstructured environments, such as search-
and-rescue missions or environmental monitoring, where predefined goals may not capture the
full complexity of the task.

e

X Intrinsic )
Adaptation Exploration

Learning

Figure 4: Intrinsic Motivation Algorithm

23 Lanillos, Pablo, et al. "Active inference in robotics and artificial agents: Survey and challenges." arXiv preprint

arXiv:2112.01871 (2021).
24 Tiomkin, S., Nemenman, I., Polani, D., & Tishby, N. (2024). Intrinsic Motivation in Dynamical Control Systems. PRX Life, 2(3),

033009.
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Multimodal Al: Integrating various generative Al approaches are with embodied Al techniques
can improve interpretability and explainability; these include LLMs, Vision Language Models
(VLMs), Generative Adversarial Networks (GANs), and diffusion models.?* Although these
combinations on their own are not technically embodied Al, they can help humans understand
embodied Al decisions and improve operators’ control and direction. For example, a drone
equipped with multimodal Al could use natural language to explain its actions or generate visual
summaries of its mission, enabling operators to make more informed decisions.

B
Result

Pre-train

e i -

w GenAl Model
Result -|||||.|.

e S —

Figure 5: Multimodal Al

REIN-2: REINFforcement within REINforcement?® is a model-free meta-learning approach for
teaching agents to learn using external deep reinforcement learning processes. REIN-2 employs
an outside learner (the meta-learner) to produce other agents (inner learners) for a particular
environment. This allows drones to learn more efficiently by leveraging prior experience and
adapting to new challenges. For example, a drone swarm could dynamically use REIN-2 to adjust
its coordination strategy in response to changing mission requirements or environmental
conditions.

Meta Learner Inner Learner n
Average Inner Learner 1
Reward n

Policy etion
Policy e i
Update :
RL Algomm eward Average
State | Reward 1

Reward

Reward

Evaluation

- Evaluation -

Inner Environment

New State

Figure 6: REIN-2: REINFforcement within REINforcement Algorithm

Imitation learning: These techniques allow embodied agents to use various algorithms to learn
from expert demonstrations of a particular skill using various algorithms—inverse reinforcement
learning (IRL), generative adversarial imitation learning (GAIL), and behavioral cloning (BC).2®
This approach is particularly useful for training drones to perform such complex tasks (such as
precision landing or infrastructure inspection) by replicating the actions of skilled operators.

25 \Wu, Jiayang, et al. "Multimodal large language models: A survey." 2023 IEEE International Conference on Big Data
(BigData). IEEE, 2023.

26 Lazaridis, Aristotelis, and loannis Vlahavas. "Rein-2: Giving birth to prepared reinforcement learning agents using
reinforcement learning agents." Neurocomputing 497 (2022): 86-93.
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Figure 7: Imitation Learning Algorithm
Transfer learning: Transfer learning algorithms learn new tasks more efficiently and effectively,
informed by prior experience on related tasks.?” Techniques include fine-tuning pre-trained
models, domain adaptation, and multitask learning. These make transfer learning particularly
valuable in scenarios with limited data. For example, a drone trained for agricultural monitoring
could adapt its skills to perform infrastructure inspections, reducing the need for extensive
retraining.
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Figure 8: Transfer Learning Algorithm
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Physical Al

Physical Al?8 is the branch of artificial intelligence dedicated to understanding, modeling, and
interacting with the physical world. Unlike traditional Al, which primarily handles abstract data like
text or images, Physical Al focuses on solving real-world problems through direct interaction with
physical environments. These systems observe the world through sensors, process
heterogeneous data to model physical systems, and use actuators to modify the environment.
Physical Als must address the inherent uncertainty of collected data and the unpredictability of
physical environments if they are to handle complex, dynamic scenarios. Applications include
autonomous robots, self-driving vehicles, and intelligent agents capable of adapting to their
surroundings by leveraging physics-based simulations and machine learning for effective
decision-making. Due to its ability to generate actionable insights and perform complex tasks,
Physical Al is also called "generative physical Al."

27 \Wang, Tianqi, and Dong Eui Chang. "Robust navigation for racing drones based on imitation learning and modularization."
2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021.

28 Lju, Yueyue, et al. "Skill transfer learning for autonomous robots and human—robot cooperation: A survey." Robotics and
Autonomous Systems 128 (2020): 103515.%7 Liu, Yueyue, et al. "Skill transfer learning for autonomous robots and human-robot
cooperation: A survey." Robotics and Autonomous Systems 128 (2020): 103515.

29 What is Physical Al?, 2024. NVIDIA. https://www.nvidia.com/en-us/glossary/generative-physical-ai/ Accessed 28/02/2025

30 Agarwal, Niket, et al. "Cosmos world foundation model platform for physical ai." arXiv preprint arXiv:2501.03575 (2025).
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Physical Al is particularly critical for drones, which operate in highly dynamic, three-dimensional
spaces where real-time perception, decision-making, and action are essential. By leveraging
physics-based simulations and machine learning, Physical Al lets drones model their
environment, predict outcomes, and adapt to changing conditions. This ability is vital for such
applications as obstacle avoidance, threat detection, and swarm coordination, where drones must
process data from multiple sensors (e.g., cameras, LIDAR, GPS) and respond in real time.

World Foundation Models (WFMs)?° form a critical subset of Physical Al, specifically designed to
understand, predict, and generate the behavior of physical environments. Like large language
models (LLMs) in their sphere, WFMs are optimized for physical reasoning and interaction rather
than text-based tasks. These models train on multimodal data—including video footage, sensor
inputs, and physics simulations—to learn spatial relationships and dynamic interactions between
objects. NVIDIA's Cosmos platform exemplifies this approach, employing diffusion and
autoregressive methods instead of the transformers commonly used in LLMs. WFMs excel at
predicting future states of physical systems, generating realistic video sequences, and creating
synthetic data for training applications such as autonomous vehicles and robots. Their training
data frequently originates from simulations that mimic real-world phenomena, including rigid body
dynamics and light interactions, allowing precise modeling of physical behaviors. For drones,
WFMs offer transformative potential in enhancing resilience and safety. By predicting future
physical states (obstacle movements or environmental changes, for example) WFMs can help
drones reliably navigate complex, dynamic environments. WFMs can also generate synthetic data
for training drones in high-risk scenarios, such as adverse weather or GPS spoofing, to improve
how they handle real-world unpredictability. Toyota's use of Cosmos for next-gen vehicles
highlights the broader applicability of WFMs, which can similarly advance drone capabilities in
security, disaster response, and beyond.

Physical Al plays a pivotal role in boosting the functionality and adaptability of autonomous
systems across diverse industries such as healthcare, transportation, and logistics. For instance,
in smart spaces like warehouses and factories, Physical Al facilitates real-time tracking and
coordination among humans, robots, and vehicles, thereby improving operational efficiency and
safety. By integrating advanced computer vision and Al models, these systems optimize dynamic
route-planning and enhance workplace safety in large-scale, complex environments. Similarly,
humanoid robots equipped with Physical Al significantly improve their ability to navigate, perceive,
and interact with their surroundings, allowing them to addressing tasks that require fine and gross
motor sKkills.
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The Importance of Security, Resilience, and Safety in Physical Al Systems

Security, resilience, and safety emerge as critical challenges as physical Al systems deploy into
the real world. Unlike traditional Al, which operates in controlled virtual environments, Physical Al
interacts directly with the real world, in which system failures can lead to immediate and potentially
catastrophic consequences. Robust measures are essential to guarantee the three pillars of
security, resilience, and safety—the foundations of fostering trust, reliability, and widespread
adoption in industries like robotics, autonomous vehicles, and industrial automation. For drones,
which operate in fast-changing three-dimensional spaces—often close to humans and critical
infrastructure—this hardiness is especially important.3°

Security is the first line of defense against cyber threats. Physical Al systems process data from
diverse sources (including sensors, cameras, and networked environments), which increases
their exposure to cyberattacks. Drone systems are particularly vulnerable to cyber threats
because they rely on multiple, such as GPS, cameras, LIiDAR, and networked communication
systems.3" A drone system breach can compromise data integrity, disrupt operations, or even
cede control to malicious interlopers. For example, a GPS spoofing attack could mislead a drone
into navigating to an incorrect location, while a compromised camera feed could obscure
obstacles or threats. A breach can compromise data integrity and lead to unsafe or erroneous
actions. For instance, an adversarial attack on an autonomous car’s sensor data could
misrepresent its surroundings, potentially causing an accident. Advanced cybersecurity measures
like encrypted communication, secure data pipelines, and real-time threat detection are essential
to mitigate such risks.

Resilience is key to maintaining system functionality in dynamic and uncertain environments.
Physical Al systems must adapt to unforeseen challenges, such as sensor failures or unexpected
external conditions, without significant performance degradation. For instance, a drone inspecting
a disaster zone must detect and compensate for a malfunctioning sensor or a sudden change in
wind conditions to continue its mission safely.3? This requires robust, fault-tolerant mechanisms,
adaptive decision-making frameworks, and the ability to switch to alternative navigation methods
(e.g., visual or inertial navigation) when primary systems fail. By leveraging Physical Al, drones
can learn dynamically from their environment and improve their resilience.

Safety is a non-negotiable requirement, given these systems' physical impacts on, and frequent
interactions, with humans. Failures in safety-critical applications—in autonomous vehicles or
industrial robots, for example—can produce accidents, injuries, or fatalities. Safety demands
rigorous testing, validation, and compliance with international standards (such as ISO 2138433 for
UAV operations). Embedding fail-safe mechanisms—e.g., emergency landing protocols, collision
avoidance systems, and real-time monitoring—can minimize operational risks. Additionally,

31 Altawy, Riham, and Amr M. Youssef. "Security, privacy, and safety aspects of civilian drones: A survey." ACM Transactions
on Cyber-Physical Systems 1.2 (2016): 1-25.

32 Andreoni, Martin et al. "Towards secure wireless mesh networks for UAV swarm connectivity: Current threats, research, and
opportunities." 2021 17th International Conference on Distributed Computing in Sensor Systems (DCOSS). IEEE, 2021.
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runtime assurance frameworks®* can continuously verify a drone’s actions to ensure they remain
within safe parameters.

To address these challenges, emerging technologies offer holistic approaches via runtime
assurance frameworks, secure-by-design principles, and adaptive learning algorithms. Drones
can achieve greater reliability and operational safety by embedding security, resilience, and safety
during development. For example, integrating multimodal Al can heighten a drone’s ability to
detect and respond to threats, while active inference algorithms can improve its ability to adapt to
dynamic environments. These advancements are essential for unlocking the full potential of
drones in applications ranging from defense and surveillance to environmental monitoring and
disaster response.

Building a safer, more secure, and resilient foundation

The Secure System Research Center (SSRC) has been developing a zero-trust framework to
improve autonomous systems' security, safety, and resilience for critical applications such as
drones. The core idea is to extend traditional zero-trust concepts beyond security to strengthen
safety and resilience as well. Here, we explore how improving embodied Al's perception, action,
memory, and learning loops can augment these vital characteristics in drones, swarms, and
generally in autonomous systems operating alone or in concert.

Security

Secure drones have been trained to recognize the early signs of anomalous flight patterns,
changes in their environment, or compromised communications. They mount mitigating
responses to limit or eliminate the threat and dynamically learn how to respond more efficiently
and effectively in the future.

e GPS spoofing detection: A drone could learn to recognize discrepancies between GPS
signals, environmental cues from cameras, and inertial measurement units to prioritize the
most trustworthy data streams.

e Novel cybersecurity attacks: UAVs could learn to identify unusual communication
patterns that indicate hacking attempts and then evaluate and undertake
countermeasures, such as dynamic channel switching, updating encryption schemes, or
returning home.

e Behavioral Analysis: The autonomous systems could learning to identify unusual
patterns of behavior in the drone swarm, patterns that might indicate security breaches,
and then act to lock out the subverted unit, force it to land, or return home safely.

33 Phadke, Abhishek, and F. Antonio Medrano. "Towards resilient UAV swarms—A breakdown of resiliency requirements in
UAV swarms." Drones 6.11 (2022): 340.

34 1SO 21384-3:2023. ISO. hitps://www.iso.org/standard/80124.html

35 Unlock the Future of Autonomous Drones with Innovative Secure Runtime Assurance (SRTA), Free Technology Innovation
Institute White Paper. 2024, https://engineeringresources.spectrum.ieee.org/free/w_tecm20/
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Resilience

Dynamic approaches help drones and swarms identify signs of malfunction, adapt to inclement
weather, and adapt to challenges more cohesively.

e Fault tolerance and recovery: This requires teaching a drone to perceive internal signals
indicating malfunction and then discover counter-actions, such as adapting control
systems to maintain stability or prioritizing critical functions in the field. On a longer time
horizon, these systems could also be trained to predict component failures and optimize
replacement schedules to lower costs or reduce the risk of catastrophic failure during
critical missions.

e Environmental adaptation: This trains drones in multiple actual and simulated
conditions—such as high winds, low or high temperatures, or rain—to dynamically learn to
plot safer flight paths, alter motor control settings, or decide when to return home safely.
Adaptive path planning algorithms could enable drones to navigate around unexpected
obstacles or different types of terrain, such as cities, buildings, forests, or caves, more
safely.

e Swarm resilience: This requires developing adaptive algorithms that allow a group to
adapt and respond as a cohesive unit. For example, better swarm resilience could improve
distributed decision-making, wherein each drone might process high-resolution data locally
and share appropriate summaries to enhance overall understanding without centralized
control. Also, the unit could be trained to dynamically reallocate tasks in case of a drone
failure or compromise. The long-term goal is to support emergent behaviors that enhance
collective resilience without explicit programming.

Safety

In the quest for safer drone operations, the goal is to develop dynamic algorithms that let UAVs
pursue goals while they avoid collisions, interact safely with humans, and carry out ever more
effective emergency protocols.

e Collision avoidance: This requires improving sensor fusion algorithms to perceive and
create a 3D model of the environment more accurately. Dynamic predictive path planning
allows a drone to anticipate the movement of dynamic obstacles, such as birds or other
drones, and adjust their trajectory accordingly. Drone fleets could also be trained to
communicate their intentions and coordinate their movements to avoid collisions with each
other and other obstacles.

e Safe human interaction: This requires teaching drones to predict human movements to
avoid collisions while working together. This could include learning to recognize gestures
in noisy environments or identifying facial expressions and body language indicative of
distress.

e Emergency protocols: This teaches drones how to cope with equipment or network
failures. More dynamic algorithms could help UAVs identify safe landing zones through
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visual analysis and population-density assessments to reduce risks to drones, property,
and people alike. Emergency protocol algorithms could also learn to continuously update
an optimal return path based on environmental and internal conditions. In cases where
collision is unavoidable, they might also learn ways to minimize damage to property or the
environment.

Zero Trust Framework in Drone Swarms
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Figure 9: Zero-Trust Framework for Embodied Al in Drone Swarms

Applications

Various embodied Al implementations could enhance many existing applications and stimulate
new ones. EAI operating at the individual-unit level could help an independent drone discover
more efficient and precise ways of perceiving the world, taking actions, and dynamically improving
the effectiveness with which it performs its mission. Better decentralized and distributed
algorithms at the swarm or fleet level could improve collective results. Distributed algorithms might
also be run across drones in the field to with centralized agents and guide actions beyond the
scope of an individual drone. Here are some examples of how these approaches could work in
practice:

Disaster response and management

Search and rescue scenario: Drones in the field could learn to more efficiently cover difficult
terrain and locate survivors, finding signs of life using combinations of video, thermal, acoustic,
and electromagnetic sensors. Here, the focus is on adaptive algorithms that accurately detect
survivors after a fire, earthquake, explosion, tornado, or flood. Video algorithms could spot
clothing or bodies; thermal algorithms could detect heat signatures of bodies; acoustic algorithms
could listen for breathing or cries for help; and electromagnetic algorithms would look for signs of
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heartbeats amid many kinds of rubble. Multimodal algorithms could combine these modalities in
any number of conditions. Embodied Al approaches could help these algorithms strengthen
themselves by combining past sensor data that indicates survivors and special simulators that
mimic different types of disasters, reproducing the physical, acoustic, and environmental inputs
that could affect sensor performance.

Dynamic mapping and modeling: Different disasters can disrupt terrain and infrastructure in
distinct ways, confounding rescue efforts by obstructing roads with debris or floodwaters, washing
out bridges, or leaving chemical spills, leaking gas, live electrical wires, or fires in their wake.
Dynamic learning can help drones and centralized control systems to correlate raw sensor data
to build maps and 3D models. They could also guide fire teams and fire-suppression drones to
pinpoint hot spots for more effective fire control. Centralized systems might also learn how to
learn dynamically to optimize rescue efforts and improve speed and safety.

Communication relays: Drone swarms can also serve as communication relays that learn to
adjust their locations, signal levels, and radio frequencies to improve coverage over a disaster
area or communicate with critical recovery teams. Here, the keys are, first, developing data sets,
models, and simulations that accurately represent radio propagation and attenuation and, second,
training more capable drone and swarm controllers.

Infrastructure inspection

Autonomous navigation: Inspecting the thousands of kinds of civil, military, transportation,
communications, and other infrastructure inspection requires that drones capture high-resolution
data by flying near hazards like powerlines, working roads, electric railways, dams, bridges,
delicate equipment, and other complex environments. Simulations of these environments could
guide development of more capable drone control systems that can capture sufficient imagery or
other data to assess an asset properly.

Defect detection: Drones do not necessarily have to see defects directly to build more competent
and adaptive inspection processes. For example, they might be trained to identify secondary signs
of damage, acting as the eyes and ears for of centralized, data-center-based embodied Al agents.
Damage spotted this way would be confirmed later, perhaps by human investigators, or by
simulations that produce the same tell-tale signs. EAl agents could also dynamically learn the
most cost-effective combination of sensors needed to identify defects characteristic of common
modes of damage.

Predictive maintenance: As in defect prediction, drones could support predictive maintenance
as part of a centralized EAIl system that is rewarded for identifying optimal maintenance schedules
for different types of infrastructure. They might weave environmental factors into what they learn
about inspection schedules and part failures to improve even better inspection programs. Or they
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might dynamically discover more cost-effective schedules for maintenance and repairs, to fix
problems before a critical failure.

Agricultural Optimization

Crop monitoring: Drones and satellites widely use multispectral imaging and statically trained
algorithms to identify signs of crop distress like disease, pests, and nutrient deficiencies. More
dynamic embodied Al approaches might learn to identify and correlate signals from newly
discovered issues to respond to emerging problems faster than previously possible.

Resource management: Individual drones could also reduce resource consumption and runoff
by learning to pinpoint areas that need fertilizers, pesticides, and water. These algorithms might
combine a centralized agent that learns how to optimize coverage and timing based on monitoring
data, soil conditions, crop state, and past yield data. Individual drones could learn better strategies
for getting pesticides exactly where required.

Yield optimization: Drones could help capture more granular information, enabling centralized

agents to learn more efficient scheduling algorithms for planting, maintaining, and harvesting
crops.
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Technological advancements supporting Embodied Al

Today, EAI innovations come from many directions, and improve multiple functions. New
algorithms improve how these systems perceive, choose better actions, remember, and learn.
And many ancillary advances may contribute to the development or growth of each of these new
algorithms. For example, the evolution of edge infrastructure supports increasingly distributed
EAI Here are just four of the most critical innovations that underpin EAl advances:

Edge computing:

Increasingly capable onboard processing units enable real-time Al computations without relying
on external servers, thus reducing latency and enhancing security. As previously noted, many
EAIl use-cases benefit from combining drones with centralized compute infrastructure that can
help correlate field perceptions and insights using more performant hardware. New low-power
chips, such as NVIDIA Jetson AGX and Qualcomm Snapdragon Flight, can improve a drone's
ability to perceive essential correlations in the field or to control motors, radios, and other onboard
equipment more effectively. These chips can also plug into edge computing frameworks to offload
planning and coordinating tasks so that the swarm further optimize its actions and strategies.

Advanced sensors and actuators

Innovations in sensors and actuators are improving a drone's ability to gather more precise
information and take more granular action. These advances include cheaper, more accurate
sensors to capture visual, thermal, acoustic, environmental, and electromagnetic information.
New multimodal models are improving the ability to distill correlations from multiple sensor
families to enhance perception and understanding. Actuators are improving, too, including
cheaper and more efficient motors that can support navigating through more challenging
environments with less power.

Reality capture

The first generation of drones focused on capturing raw video or pictures. Today, however, many
EAIl use cases need to make sense of 3D or 4D models (in space and in space and time) that
improve understanding and produce better-laid-out actions. Over the last few of years, promising
innovations in NeRFs and Gaussian splats have improved techniques for translating raw video or
image data into 4D models, and doing it much more efficiently than previous approaches that
relied on photogrammetry or LIDAR. At the moment, reality capture focuses on visible data.
Today’s research, however, suggest combining multi-spectral, thermal, and acoustic data to
inform richer 3D models for new use cases.

World models

In EAl applications, more precise data sets—the products of prior experiences and granular world
models—are the equivalent of the big data that helped accelerate LLM development.
Researchers have already devoted considerable work to building rich 3D world models that can
support manifold use cases. Much of this research has focused on relatively simple applications
like navigation in realistic 3D virtual worlds. Future work could use new representations of novel
characteristics under varied circumstances, factors like radio propagation, richer mechanical
physics, and chemical or plant health models.
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Challenges

Model interoperability

EAl is informed by various models that represent distinct aspects of the world. There are good
reasons for this. For example, simply simulating a 3D layout is far more efficient than other models
that might characterize radio propagation, internal states, or mechanical properties. In the case
of drones, these added components could include the physical layout of the environment, radio
frequency properties, and the significance of entities revealed by various kinds of sensor data.
The IEEE P2874 spatial web, architecture, and governance working group is developing a
framework to help unify these different world descriptions.?® And, the new Hyperspace
Transaction Protocol improves interoperability through different semantically compatible
representations of things.

Neural network architectures

Embodied agents need to learn more efficient, accurate, and precise representations of the real
world to understand better, to build representations that inform better actions. Today, however,
most deep learning approaches are built on multilayer perceptron (MLP) frameworks—inspired
by human and animal minds, yet in need of better approximations. The recent discovery of
Kolmogorov Arnold Networks (KAN)—which models neural network architectures as
mathematical functions—suggests a path toward better models that more learn to represent
physical phenomena with partial differential equations, and do it 10,000 times more efficiently
than existing approaches. However, KANs struggle with noisy data and require a sequential
training process that is harder to scale than MLP approaches. In the long run, Kolmogorov Arnold
Networks could inspire even newer neural network architectures for embodied Al.

Regulatory compliance

The aviation world is a patchwork of regulatory frameworks, and drones must comply with every
set of rules they encounter in flight as regulations shift from place to place, time to time, mission
to mission, and operator to operator. Rules regarding flight zones, altitudes, and privacy are just
the beginning. Regulations can change in disaster situations, or with the weather, or with changes
across jurisdictions. The big challenge here lies in finding better ways to identify the rewards and
penalties that balance regulations against efficient operations. Trying to meet static regulatory
requirements is hard. Meeting evolving regulatory priorities is harder. Developing better EAI
algorithms that could adapt to these changes is essential.

Ethical and social considerations

All Al systems come with various challenges. These include dealing with biases and gaining social
acceptance. Bias may stem from priorities established by company executives or the inclinations
of developers. There is a growing concern that company-focused objectives may clash with wider
societal acceptance of embodied Al. For example, SMAI EAI for social media might improve click-
through rates while increasing dissent and hate speech. Similarly, an EAIl system that streamlines
logistics throughput could also come at the cost of worker mental health and familial and
community well-being. Here is the challenge: it is relatively straightforward to formalize company
objectives into policies, we must balance these with more ephemeral objectives like societal

36 “|EEE Draft Standard for Spatial Web Protocol, Architecture and Governance,” IEEE P2874/D3.1, June 2024, pp. 1-185, Jun.
2024, Accessed: Mar. 02, 2025. [Online]. Available: https://ieeexplore.ieee.org/document/10557550
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health and employee well-being. In the case of drones, responses to issues like these could
include improving the EAI's ability to detect terroristic and anti-social behavior, while balancing
these abilities against social concerns about Big Brother oversight.

Sim-reality gap

Innovations in EAI rely on training models in simulated worlds. Tll research has revealed that
many of the resulting algorithms don’t produce the same results in real-world settings that they
did in silico. This gap could arise from noise inherent in real-world data and the fuzziness of
attempts to make sense of it. Or the gap may stem from poor representations of the real world,
or from limitations on the underlying algorithms. Future research needs to address the underlying
causes of these discrepancies and identify better ways of closing this gap.
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Conclusion

Embodied Al promises to yield ever-more-capable control systems for drone and other
autonomous Al systems. We are counting on EAI to significantly improve the security, resilience,
and safety of individual drones and drone swarms. And innovations in EAI algorithms inspired by
recent progress in GenAl could also improve real-time adaptation and intelligent collaboration.
At the same time, we need more research to find more-efficient, more-practical ways to integrate
advanced sensors, edge computing capabilities, and sophisticated machine learning algorithms—
all to push the envelope of what drones can achieve. We are still in the early stages of applying
some seminal lessons of GenAl to embodied Al to bolster applications in areas like disaster
response, infrastructure inspection, or agriculture operations.

If we are to have a part in building any of the best, most inclusive of possible futures, our research
must balance drones' computational and energy efficiency with diverse regulatory requirements
and myriad ethical considerations. This will require balancing potential applications of EAl in drone
swarms and distributed controllers with clear social and legal imperatives.

Also, it's essential to consider how EAIl innovations promise to improve cyber security, safety, and
resilience. GenAl's success suggests a way to evolve EAI so it plays a pivotal role in shaping the
future of drone technology. However, this will require figuring out how to address all the
challenges of responsibly harnessing the power of these new tools, by building solutions that
simultaneously conform to government imperatives, produce company profits, and serve human
well-being.
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