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Abstract 

 

 
Embodied Artificial Intelligence (EAI) integrates perception, action, memory, and learning to 
enable autonomous systems to dynamically interact with and learn from their environments. While 
large language models have revolutionized generative AI, the next frontier will be applying EAI 
principles to robotics, drones, and interconnected systems. This paper explores how EAI can 
transform drone and drone-swarm development, with a focus on enhancing their security, 
resilience, and safety. EAI lets drones actively perceive, adapt to, and learn from real-world 
scenarios, addressing critical challenges confronting unmanned aerial systems, such as threat 
detection, dynamic decision-making, and swarm coordination. We also examine recent 
innovations in multimodal large models (MLMs), their potential to unify EAI processes, and the 
challenges that developers must overcome to win broader adoption. Ultimately, this work 
highlights how EAI can empower drones to operate more effectively in complex, unpredictable 
environments. 
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Intro 

 

 
Conventional AI research utilizes large datasets to look for patterns for classification and 
regression; time-dependent information plays a minor role. In contrast, the Embodied AI (EAI) 
teaches autonomous systems to learn by interacting with their dynamic environment—much as 
living animals adapt to ever-changing environments, actively exploring their surroundings and 
modifying incoming data to enhance clarity, facilitate learning, improve memory retention, and 
stay aware of possible threats. EAI is an old field that dates back to early work on robots.1 
However, today, EAI is a patchwork of different tools, algorithms, and processes that improve 
how these systems perceive, act, remember, and learn. 
 
 

Aspect Conventional AI Embodied AI 

Data Source 
Static datasets (text, images, structured 

data) 
Dynamic environments (sensor feeds, real-time data) 

Learning Approach Pattern recognition and regression Interaction-based learning (active exploration) 

Context Disembodied, often abstract Grounded in real-world, physical context 

Interaction with 
Environment 

None, operates in a virtual/abstract 
space 

Active interaction with physical environments 

Applications 
Chatbots, financial systems, 

recommendation engines 
Humanoid robots, autonomous cars, drones, smart 

factories 

Challenges 
Limited adaptability to dynamic, real-

world scenarios 
Handling uncertainty, dynamic scenarios, real-world 

unpredictability 

 
Table 1: Comparison of Conventional AI vs Embodied AI 

 
Drones, especially in swarm configurations, operate in highly unpredictable environments where 
static AI models may struggle. For example, security drones monitoring large-scale infrastructure 
must continuously assess threats, coordinate responses, and adapt to changing conditions. 
Traditional AI methods, which rely on pre-processed datasets and static decision-making, often 
falter in these circumstances. EAI, on the other hand, enables drones to process real-time sensor 
data, collaborate intelligently within the swarm, and autonomously refine their strategies to 
respond to new threats. 
 
Drone systems’ transition to EAI parallels the evolution of natural language processing before the 
rise of generative AI. Before large language models (LLMs) emerged, researchers relied on their 
own patchwork methods--from hand-coded symbolic AI to recurrent neural networks--to process 
and interpret text. LLMs revolutionized the field by unifying these approaches, making AI systems 
significantly more capable. Similarly, multimodal large models (MLMs) for EAI could unify 
perception, action, memory, and learning, thus, allowing drones to develop more sophisticated 
decision-making abilities in security-sensitive environments. 
 
We are now on the crest of a similar wave of innovation with the advent of multimodal large 
models (MLMs) for embodied AI. MLMs could similarly unify and simplify embodied AI models 

 
1 Brooks, R.A., 1991. Intelligence without representation. Artificial intelligence, 47(1-3), pp.139-159. 
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across traditionally disparate processes, unifying perception, action, and memory. Innovations in 
MLMs allow agents to learn from the way they perceive the world and act in it, rather than depend 
solely on the words humans have written. These MLM algorithms may also hallucinate less, since 
they train on direct experience in context, rather than on context-less, disembodied data. This 
advance will accelerate the growth of the estimated multi-trillion-dollar market for humanoid 
robots, drones, autonomous cars, and more competent enterprise systems.  
Embodied AI agents may run directly on autonomous systems or as parts of a distributed 
processes, such as swarm or edge computing infrastructure. Autonomous humanoid robots with 
eyes, feet, and hands are undoubtedly impressive. However, AI-embodied cars, drones2, and 
autonomous labs already exist—as do less-embodied social media AI (SMAI) recommendation 
systems, game players, and worker-scheduling systems.  
The latter, less-embodied applications deliver some of today’s best results; perhaps because they 
are so disembodied, they are easier to train for simple goals. They can also miss out on important 
context that could raise ethical issues, however. For example, SMAI may increase user 
engagement at the cost of increasing hate speech or social dissent, which are hard to quantify. 
Similarly, worker-scheduling systems may increase throughput at the expense of workers' 
physical and mental health.  

 

 

 

 What is embodied AI? 

 
There are many ways to embody AI in more autonomous, dynamic learning systems. Robots and 
autonomous cars tend to attract the most attention: humanoid robots can perform many human 
tasks using tools designed for humans, and we all drive cars when we might prefer not to. Unlike 
robots and cars, drones operate in highly dynamic, three-dimensional environments, requiring 
even more adroit real-time perception, decision-making, and coordination. This makes drones the 
ideal platform for exploring and advancing the principles of embodied AI.  
Much EAI research has focused on vision-language models that enable robots and vehicles to 
interpret and interact with simplified 3D worlds. However, some of the most impressive EAI 
systems are surprisingly simple.3 For example, social media AI (SMAI) algorithms, which optimize 
content and ad recommendations, have grown into a multi-billion-dollar industry. Similarly, 
autonomous gaming algorithms have achieved superhuman performance in games like Chess, 
Go, and StarCraft. In contrast, more complex EAI systems for robots, cars, and drones are 
progressing more slowly, thanks largely to the challenges of the unpredictable, real-world 
environment. 
Underneath all these applications—and potential applications—lies the embodied system. And 
the foundation of the embodied system is its training process. Figuring out how to industrialize 
and automate training is a primary challenge. This involves unifying key capabilities, which are 
today often treated separately for drones and swarms. Thus, the four essential EAI components, 

 
 
2 Kourav, Sateesh, Kirti Verma, and M. Sundararajan. "Artificial Intelligence Algorithm Models for Agents of Embodiment for 
Drone Applications." Building Embodied AI Systems: The Agents, the Architecture Principles, Challenges, and Application 
Domains. Cham: Springer Nature Switzerland, 2025. 79-101. 
3 Paolo, Giuseppe, Jonas Gonzalez-Billandon, and Balázs Kégl. "Position: a call for embodied AI." Forty-first International 
Conference on Machine Learning. 2024. 
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too often trained individually, but could be trained together and faster with the right approach. The 
supporting pillars of EAI include:  

Perception 
 
Perception is the agent’s ability to sense its environment. This requires transforming raw sensor 
data into an actionable format. For drones, this means correlating and fusing inputs from GPS, 
inertial measurement units (IMUs), radio frequency (RF) signals, thermal imaging, LiDAR, and 
onboard cameras. These data streams allow drones to navigate, detect threats, and adjust flight 
paths dynamically. Promising innovations like neural radiance fields4 (NeRFs, which can build 3D 
scenes from incomplete sets of 2D images) and Gaussian splats5 (which can display volumes 
without first converting the data into surfaces or lines) suggest more efficient ways of capturing 
and distilling more efficient 4D (space and time) representations of real-world experiences.  
 

Action 
 
Action refers to the agent’s ability interact with and change its environment. For drones, actions 
can be categorized into reactive and goal directed. Reactive actions, such as stabilizing flight in 
turbulent conditions or avoiding sudden obstacles, critical for self-preservation and must be 
instantaneous. Goal-directed actions, on the other hand, involve higher-level decision-making, 
such as planning a route or coordinating with other drones in a swarm. These different types of 
actions benefit from many AI techniques. For example, reflexive actions improve more with model-
free reinforcement learning methods, which learn first principles from scratch. In contrast, goal-
directed actions do better with model-based reinforcement learning approaches that start with 
models of the world.  
 

Memory 
 
Memory characterizes an agent’s ability to retain essential elements of past experiences. There 
are many different approaches to this, including retaining raw data, semantic descriptions that 
summarize crucial elements for various tasks, and episodic aspects that might remind us that 
touching a fire is not a good thing. Efficient memory management is crucial, as drones must 
process vast amounts of data while operating in real-time. Keeping track of everything in a data 
stream requires considerable overhead. Neural network approaches show promise for efficiently 
condensing experiences into weights and features. Combining multiple approaches—various 
efforts to do this are underway—could simplify might remind us that touching a fire is not a good 
thing. Efficient memory management is crucial, as drones must process vast amounts of data 
while operating in real-time. Keeping track of everything in a data stream requires considerable 
overhead. Neural network approaches show promise for efficiently condensing experiences into 
weights and features. Combining multiple approaches—various efforts to do this are 
underway—could simplify processes for remembering different levels of detail. For example, 

 
4 Mildenhall, Ben; Srinivasan, Pratul P.; Tancik, Matthew; Barron, Jonathan T.; Ramamoorthi, Ravi; Ng, Ren (2020). "NeRF: 
Representing Scenes as Neural Radiance Fields for View Synthesis". In Vedaldi, Andrea; Bischof, Horst; Brox, Thomas; Frahm, 
Jan-Michael (eds.). Computer Vision – ECCV 2020. Lecture Notes in Computer Science. Vol. 12346. Cham: Springer 
International Publishing. pp. 405–421. arXiv:2003.08934. doi:10.1007/978-3-030-58452-8_24. 
5 Westover, Lee Alan (July 1991). "SPLATTING: A Parallel, Feed-Forward Volume Rendering Algorithm" 
https://articles.tomasparks.name/publications/Westover1991.pdf 
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retrieval augmented generation6,7 (RAG), a GenAI technique for retrieving and incorporating 
new information, combined with LLMs show promise in pulling up the most relevant memory 
traces to improve accuracy. A similar approach might improve MLMs as well. 
 

Learning 
 
Learning involves developing algorithms that integrate experiences to form new knowledge and 
abilities. Continuous, dynamic learning is essential for drones operating in unpredictable 
environments. This is a long-term goal. Research has made considerable progress towards deep 
reinforcement learning (deep RL, which allows systems to use unstructured data to reach 
decisions), particularly for achieving simple objectives. However, RL requires significant effort and 
expertise to define appropriate policies for more complex real-world scenarios. Newer algorithms 
derived from psychology might help overcome these limitations: active inference8 (using Bayesian 
statistics) and intrinsic motivation9 (aimed at reducing “surprising” results). Also, the multi-layered 
perceptron networks that underlie most existing approaches can suffer from catastrophic 
forgetting (sudden, drastic loss of previously learned information or behavior) or learning from 
non-stationary data (drawing valid operating assumptions from information that changes over 
time) while interacting with the environment. Advances in neural network architectures, such as 
Kolmogorov-Arnold Networks (KAN)10 and improved world simulators11, may help drones develop 
more robust representations of their experiences, reducing such issues. 

 
6 Gao, Yunfan; Xiong, Yun; Gao, Xinyu; Jia, Kangxiang; Pan, Jinliu; Bi, Yuxi; Dai, Yi; Sun, Jiawei; Wang, Meng; Wang, Haofen 
(2023). "Retrieval-Augmented Generation for Large Language Models: A Survey". arXiv:2312.10997  
7 "What is retrieval-augmented generation?". IBM. 22 August 2023. Retrieved 7 March 2025. 
https://research.ibm.com/blog/retrieval-augmented-generation-RAG 
8Sajid N, Ball PJ, Parr T and Friston KJ, "Active Inference: Demystified and Compared," in Neural Computation, vol. 33, no. 3, 
pp. 674-712, March 2021, doi: 10.1162/neco_a_01357. 
9 Tanneberg, Daniel, Jan Peters, and Elmar Rueckert. "Intrinsic motivation and mental replay enable efficient online adaptation 
in stochastic recurrent networks." Neural networks 109 (2019): 67-80. 
10 Liu, Ziming, et al. "Kan: Kolmogorov-Arnold networks." arXiv preprint arXiv:2404.19756 (2024). 
11  “How AI is improving simulations with smarter sampling techniques.” MIT News | MIT, 2 Oct. 2024, news.mit.edu/2024/how-
ai-improving-simulations-smarter-sampling-techniques-1002., Retrieved 7 March 2025 
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Figure 1: Main components of Embodied AI 

 

Building on GenAI gains 

Recent progress in embodied AI (EAI) builds on the phenomenal success of recent gains by 
generative AI (GAI). Both approaches strive to improve various processes for making sense of 
unstructured data, such as text, with LLMs or sensor data in embodied AI systems. However, a 
key distinction lies in the data they process. While generative AI models, such as large language 
models (LLMs), typically train on static datasets that require expensive retraining to update, 
embodied AI systems learn from dynamic, real-time sensor data and the outcomes of their 
actions. This learning-by-doing can occur through simulations or direct interactions in the field, 
making EAI particularly well-suited for applications like drones, which operate in unpredictable, 
ever-changing environments. 

 
Aspect GenAI Embodied AI 

Focus Text and static data Sensor and dynamic data 

Applications NLP, chatbots, coding assistants Robots, drones, autonomous systems 

Challenges Hallucinations in LLMs, limited real-world 

context 

Dynamic, real-world uncertainty, handling sensor noise 

 
Table 2: Comparison of Generative AI vs Embodied AI 

 
Despite these differences, several aspects of GenAI progress inform the development of more 
capable embodied AI models. At a high level, these include 1) new methods for discovering 
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correlations in large, unstructured data sets; 2) automating processes for learning from extensive 
unstructured data sets; 3) new methods for generating synthetic data; 4) innovations in user-
experience design; 5) new approaches to improving precision and accuracy; and 6) multimodal 
approaches for correlating relationships across different types of data. 
For drones, these advancements are not just theoretical; they have practical implications for 
security, resilience, and safety. For example, when trained on synthetically generated data, 
drones can learn to handle rare but critical challenges, such as navigating smoke-filled 
environments or avoiding collisions in dense urban areas. Similarly, multimodal approaches can 
enhance a drone’s ability to detect and respond to threats in real-time, such as identifying 
unauthorized drones or tracking suspicious activities. 
 

1) New methods for discovering correlations in large unstructured data sets 
Before recent innovations in transformers (a deep learning coder-decoder technique that 
incorporates an attention function) , GANs (Generative Adversarial Networks), and diffusion 
models (which synthesize new data points with the same distribution as the base data), 
considerable human effort was required to organize and structure unstructured information like 
text, code, images, audio, and raw sensor feeds into a format suitable for AI and ML training. New 
GenAI algorithms like these can automatically capture essential correlations. For example, the 
seminal paper on transformers suggested that “attention is all you need”12 to build a more 
competent translator. This allowed transformers to automatically map words, entities, and 
concepts into vector embeddings directly, rather than the hand-coding required by earlier 
approaches like Word2Vec13 and GloVe.14 Similar techniques could help automate embeddings 
across the perceive, act, remember, and learn loops in embodied AI. For instance, drones could 
use transformer-based models to process real-time sensor data to identify obstacles or detect 
anomalies in their surroundings. 
 

2) Automating processes for learning from extensive unstructured data sets 
Early work on generative AI (GenAI) algorithms focused on relatively simple tasks, such as 
language translation and text generation. OpenAI’s groundbreaking insight was that scaling these 
algorithms with vast datasets could enable advanced applications like chatbots, coding 
assistants, copilots, and even systems capable of generating audio, images, and video. Similarly, 
Embodied AI has the potential to scale effectively by training on diverse datasets that capture the 
experiences of comparable agents or through simulations that accurately model complex 
environments. These environments could include 3D worlds, physical dynamics, wireless signal 
propagation, and scenarios emphasizing safety, resilience, and security. For example, while 
roboticists have made significant progress in teaching robots to walk using basic physics models, 
future advancements will require finer-grained models to tackle more nuanced tasks. These could 
include teaching drones to navigate complex terrains, inspect infrastructure, or coordinate in 
swarms for search-and-rescue missions. 
 
3) New methods for synthetic data generation 
Current GenAI models are often too large and computationally intensive for real-time tasks, but 
they do excel at generating synthetic data for training smaller, faster models. In cybersecurity, for 

 
12 Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017). 
13 word2vec. (n.d.). TensorFlow. https://www.tensorflow.org/text/tutorials/word2vec , Accessed 27/02/2025 
14 Pennington, Jeffrey, Richard Socher, and Christopher D. Manning. "Glove: Global vectors for word representation." 
Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 2014. 
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example, synthetic data is used to improve fault detection, malware identification,15 and intrusion 
prevention. Similarly, synthetic data can enhance embodied AI by creating diverse drone-training 
scenarios, such as simulating adverse weather conditions, sensor failures, or adversary attacks. 
 

4) Innovations in user experience design 
Large language models can also summarize complex information for several types of users and 
expand simple prompts into command appropriate for multiple systems. For example, the TII has 
been developing a natural language interface on top of the Falcon LLM16 that allows humans to 
verbally create complex control programs for a swarm of robots, allowing (for example) voice 
control for monitoring the perimeter of an event. Similar advances improve the drone user’s 
experience, letting operators issue high-level commands like "inspect the bridge for structural 
damage" or "search for survivors in the disaster zone." Vision-language models can enhance 
drone interfaces with intuitive visual feedback and seamless human-drone collaboration. 
 

5) New approaches to improving precision and accuracy 
LLMs’ tendency to hallucinate with complete confidence is a growing concern—particularly in 
edge cases or when describing things that under-represented in their training data. Techniques 
for reducing hallucinations and improving accuracy and precision and reducing hallucinations 
have included 1) fine-tuning LLMs for specific use cases; 2) priming LLMs with a subset of the 
most relevant data using retrieval augmented generation (RAG); 3) using GraphRAG17 to prime 
the model with a knowledge graph that represents the relationship between entities in in the data; 
and 4) refining results using special-purpose transformers or LLMs to decompose unstructured 
data in entities, relationships, and properties. These approaches can also improve embodied AI 
by refining how drones process raw sensor data. For example, a drone’s camera feed could be 
distilled into precise representations of relevant entities (such as people, infrastructure, or fires) 
and their characteristics. This would enhance the drone’s ability to make accurate decisions in 
real-time, such as identifying threats or prioritizing tasks during a mission. 
 

6) Multimodal approaches for correlating relationships across different types of data 
The first generation of GenAI algorithms was trained on a single data modality, such as text alone 
or images alone. Researchers have developed ways of training algorithms (transformers, for 
example) on multiple modalities of data, such as text, audio, video, sensor data, or robot 
instructions. Training a new language model from scratch requires considerable time and 
computing, so initial R&D on fusing new data modalities into existing LLMs could have a 
substantial payoff. Recent progress has focused on combining modalities at training time; this 
can produce better correlations across modalities in the vector embedding space. For example, 
method allowed voice-chat assistants (notably OpenAI’s GPT-4o18) to learn the rhythms, 
cadence, and prosody of human speech, rather than just the text and its audio equivalent. 
Robotics researchers have found that similar approaches can help to train more competent 
robotic controllers that can manage multiple robot models.19 Similar approaches promise better 
embodied AI models that 1) work across several models of drones, robots, and cars; 2) correlate 

 
15 G. Gebrehans et al., "Generative Adversarial Networks for Dynamic Malware Behavior: A Comprehensive Review, 
Categorization, and Analysis" in IEEE Transactions on Artificial Intelligence, 2025 
16 Falcon 3: UAE’s Technology Innovation Institute launches world’s most powerful small AI models that can also be run on light 
infrastructures, including laptops. (2024, December 17). https://www.tii.ae/news/falcon-3-uaes-technology-innovation-institute-
launches-worlds-most-powerful-small-ai-models 
17 Microsoft, “Welcome to GraphRAG,” https://microsoft.github.io/graphrag/. Accessed 19/03/2025 
 
 

https://checkpoint.url-protection.com/v1/r07/url?o=https%3A//microsoft.github.io/graphrag/&g=MmMxNjhiYmFlN2U5NzY3Ng==&h=Mjc3OTdkYWY1MGRlZTEyNzNkOTg5YzUxNWYzNzE5OWRhOTllY2JkMThkYjU1NzBkZDIzYTI5NTk0Y2E5NGRhYg==&p=bWVjMTp0ZWNobm9sb2d5aW5ub3ZhdGlvbmluc3RpdHV0ZTpjOm86NjkwNDNlZTY2NGUxMGVlYzE0MTczZjUzNzMyZjA4MzA6NzpwOlQ=
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insights across models used to improve the safety, security, and resilience in these systems; and 
3) communicate with humans about their experiences and decisions.  
 

Embodied AI algorithms 

 
At a high level, embodied AI and generative AI provide frameworks for drones to learn by 
interacting with physical or simulated worlds. These models can also help integrate and 
synthesize insight and action from multiple sensors. Some types of embodied AI can learn from 
their interactions with more ephemeral systems. For example, algorithms may also learn how to 
interpret and adapt to security threats. They can take steps to shore up networking channels, 
modify how they interpret information arising from malicious GPS attacks, or change the way they 
communicate with other members in a fleet partially composed of drones. Multiple classes of 
algorithms can improve feedback-based dynamic learning improve decision-making, adaptability, 
and functionality.  
Here are a few examples: 
Reinforcement learning (RL) is the status quo in most embodied and agentic AI research. It has 
delivered impressive results by beating the top Go and StarCraft20 players. Human effort is also 
required to specify the policies that optimize results, which may then suffer from human biases. 
For drones, RL can optimize navigation, obstacle avoidance, and swarm coordination. Still, its 
effectiveness depends on the quality of the reward design and its ability to handle real-world 
unpredictability.21 

 
Figure 2: Reinforcement Learning Algorithm 

 
Active Inference: These approaches attempt to maximize the “free energy” of a physical system. 
In this context, the free energy principle posits that the brain minimizes uncertainty or unexpected 
outcomes by generating predictions through internal models and refining them with sensory 
data.22 The basic concept was deriving from physics and suggests how systems can become 
more efficient and adapt under novel and uncertain conditions.  In other words, how can a physical 
system adjust its responses to new information in a way that increases its ability to adapt in the 

 
18 OpenAI, GPT-40, https://openai.com/index/hello-gpt-4o/ Accessed 28/02/2025  
19 Li, Xiaoqi, et al. "Manipllm: Embodied multimodal large language model for object-centric robotic manipulation." Proceedings 
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024. 
20 Vinyals, Oriol, et al. "Starcraft II: A new challenge for reinforcement learning." arXiv preprint arXiv:1708.04782 (2017). 
21 Azar, Ahmad Taher, et al. "Drone deep reinforcement learning: A review." Electronics 10.9 (2021): 999. 
22 Lanillos, Pablo, et al. "Active inference in robotics and artificial agents: Survey and challenges." arXiv preprint 
arXiv:2112.01871 (2021). 

https://checkpoint.url-protection.com/v1/r07/url?o=https%3A//openai.com/index/hello-gpt-4o/&g=YmMzMjdiY2Q4MTkxODZhNA==&h=YWFiMTJmNTE5NTkwZGFjNDc2MmY2NzFkNzM5NTg2NjM1ZGNiZmI4MWUxZjljOThiZjRhMjFjNWRhNDI1ZGE4Zg==&p=bWVjMTp0ZWNobm9sb2d5aW5ub3ZhdGlvbmluc3RpdHV0ZTpjOm86NjkwNDNlZTY2NGUxMGVlYzE0MTczZjUzNzMyZjA4MzA6NzpwOlQ=
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future? This is a newer concept. It is not as well-studied as RL, but it does show promise in 
teaching systems to learn with less manual effort. While still an emerging field, active inference 
shows promise for enabling drones to operate in dynamic environments, such as disaster zones 
or contested airspace, where conditions can change rapidly and unpredictably. 
 

 
 

Figure 3: Active Inference Algorithm 

 
Intrinsic motivation: This approach trains AI systems to be more curious.23 It is an even newer 
new concept than RL and active inference. This third technique suggests new ways to guide 
intrinsically motivated behaviors to developing more supple AI systems. This approach is 
particularly useful for drones operating in unknown or unstructured environments, such as search-
and-rescue missions or environmental monitoring, where predefined goals may not capture the 
full complexity of the task. 

 
 

Figure 4: Intrinsic Motivation Algorithm 
 

 
23 Lanillos, Pablo, et al. "Active inference in robotics and artificial agents: Survey and challenges." arXiv preprint 
arXiv:2112.01871 (2021). 
24 Tiomkin, S., Nemenman, I., Polani, D., & Tishby, N. (2024). Intrinsic Motivation in Dynamical Control Systems. PRX Life, 2(3), 
033009. 
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Multimodal AI: Integrating various generative AI approaches are with embodied AI techniques 
can improve interpretability and explainability; these include LLMs, Vision Language Models 
(VLMs), Generative Adversarial Networks (GANs), and diffusion models.24 Although these 
combinations on their own are not technically embodied AI, they can help humans understand 
embodied AI decisions and improve operators’ control and direction. For example, a drone 
equipped with multimodal AI could use natural language to explain its actions or generate visual 
summaries of its mission, enabling operators to make more informed decisions. 
 

 
Figure 5: Multimodal AI 

 
REIN-2: REINFforcement within REINforcement25 is a model-free meta-learning approach for 
teaching agents to learn using external deep reinforcement learning processes. REIN-2 employs 
an outside learner (the meta-learner) to produce other agents (inner learners) for a particular 
environment. This allows drones to learn more efficiently by leveraging prior experience and 
adapting to new challenges. For example, a drone swarm could dynamically use REIN-2 to adjust 
its coordination strategy in response to changing mission requirements or environmental 
conditions. 
 

 
 

Figure 6: REIN-2: REINFforcement within REINforcement Algorithm 

 
Imitation learning: These techniques allow embodied agents to use various algorithms to learn 
from expert demonstrations of a particular skill using various algorithms—inverse reinforcement 
learning (IRL), generative adversarial imitation learning (GAIL), and behavioral cloning (BC).26 
This approach is particularly useful for training drones to perform such complex tasks (such as 
precision landing or infrastructure inspection) by replicating the actions of skilled operators. 

 
25 Wu, Jiayang, et al. "Multimodal large language models: A survey." 2023 IEEE International Conference on Big Data 
(BigData). IEEE, 2023. 
26 Lazaridis, Aristotelis, and Ioannis Vlahavas. "Rein-2: Giving birth to prepared reinforcement learning agents using 
reinforcement learning agents." Neurocomputing 497 (2022): 86-93. 
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Figure 7: Imitation Learning Algorithm  

Transfer learning: Transfer learning algorithms learn new tasks more efficiently and effectively, 
informed by prior experience on related tasks.27 Techniques include fine-tuning pre-trained 
models, domain adaptation, and multitask learning. These make transfer learning particularly 
valuable in scenarios with limited data. For example, a drone trained for agricultural monitoring 
could adapt its skills to perform infrastructure inspections, reducing the need for extensive 
retraining. 

 
Figure 8: Transfer Learning Algorithm  

Physical AI 

Physical AI28 is the branch of artificial intelligence dedicated to understanding, modeling, and 
interacting with the physical world. Unlike traditional AI, which primarily handles abstract data like 
text or images, Physical AI focuses on solving real-world problems through direct interaction with 
physical environments. These systems observe the world through sensors, process 
heterogeneous data to model physical systems, and use actuators to modify the environment. 
Physical AIs must address the inherent uncertainty of collected data and the unpredictability of 
physical environments if they are to handle complex, dynamic scenarios. Applications include 
autonomous robots, self-driving vehicles, and intelligent agents capable of adapting to their 
surroundings by leveraging physics-based simulations and machine learning for effective 
decision-making. Due to its ability to generate actionable insights and perform complex tasks, 
Physical AI is also called "generative physical AI." 

 
27 Wang, Tianqi, and Dong Eui Chang. "Robust navigation for racing drones based on imitation learning and modularization." 
2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021. 
28 Liu, Yueyue, et al. "Skill transfer learning for autonomous robots and human–robot cooperation: A survey." Robotics and 
Autonomous Systems 128 (2020): 103515.27 Liu, Yueyue, et al. "Skill transfer learning for autonomous robots and human–robot 
cooperation: A survey." Robotics and Autonomous Systems 128 (2020): 103515. 
29 What is Physical AI?, 2024. NVIDIA. https://www.nvidia.com/en-us/glossary/generative-physical-ai/ Accessed 28/02/2025  
30 Agarwal, Niket, et al. "Cosmos world foundation model platform for physical ai." arXiv preprint arXiv:2501.03575 (2025). 

https://checkpoint.url-protection.com/v1/r07/url?o=https%3A//www.nvidia.com/en-us/glossary/generative-physical-ai/&g=ZDRlYzEzYjdmNjc2MzFkMA==&h=N2IyMTg5M2FiNmI4YWVmYTJmMmU2ZjdmMWE5ZGNmYjg0Mzg1YmU4ZTFiNzczMjgwZDcwNjRjMTYwY2QzZGIyMw==&p=bWVjMTp0ZWNobm9sb2d5aW5ub3ZhdGlvbmluc3RpdHV0ZTpjOm86NjkwNDNlZTY2NGUxMGVlYzE0MTczZjUzNzMyZjA4MzA6NzpwOlQ=
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Physical AI is particularly critical for drones, which operate in highly dynamic, three-dimensional 
spaces where real-time perception, decision-making, and action are essential. By leveraging 
physics-based simulations and machine learning, Physical AI lets drones model their 
environment, predict outcomes, and adapt to changing conditions. This ability is vital for such 
applications as obstacle avoidance, threat detection, and swarm coordination, where drones must 
process data from multiple sensors (e.g., cameras, LiDAR, GPS) and respond in real time. 

World Foundation Models (WFMs)29 form a critical subset of Physical AI, specifically designed to 
understand, predict, and generate the behavior of physical environments. Like large language 
models (LLMs) in their sphere, WFMs are optimized for physical reasoning and interaction rather 
than text-based tasks. These models train on multimodal data—including video footage, sensor 
inputs, and physics simulations—to learn spatial relationships and dynamic interactions between 
objects. NVIDIA's Cosmos platform exemplifies this approach, employing diffusion and 
autoregressive methods instead of the transformers commonly used in LLMs. WFMs excel at 
predicting future states of physical systems, generating realistic video sequences, and creating 
synthetic data for training applications such as autonomous vehicles and robots. Their training 
data frequently originates from simulations that mimic real-world phenomena, including rigid body 
dynamics and light interactions, allowing precise modeling of physical behaviors. For drones, 
WFMs offer transformative potential in enhancing resilience and safety. By predicting future 
physical states (obstacle movements or environmental changes, for example) WFMs can help 
drones reliably navigate complex, dynamic environments. WFMs can also generate synthetic data 
for training drones in high-risk scenarios, such as adverse weather or GPS spoofing, to improve 
how they handle real-world unpredictability. Toyota's use of Cosmos for next-gen vehicles 
highlights the broader applicability of WFMs, which can similarly advance drone capabilities in 
security, disaster response, and beyond. 

Physical AI plays a pivotal role in boosting the functionality and adaptability of autonomous 
systems across diverse industries such as healthcare, transportation, and logistics. For instance, 
in smart spaces like warehouses and factories, Physical AI facilitates real-time tracking and 
coordination among humans, robots, and vehicles, thereby improving operational efficiency and 
safety. By integrating advanced computer vision and AI models, these systems optimize dynamic 
route-planning and enhance workplace safety in large-scale, complex environments. Similarly, 
humanoid robots equipped with Physical AI significantly improve their ability to navigate, perceive, 
and interact with their surroundings, allowing them to addressing tasks that require fine and gross 
motor skills. 
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The Importance of Security, Resilience, and Safety in Physical AI Systems 

Security, resilience, and safety emerge as critical challenges as physical AI systems deploy into 
the real world. Unlike traditional AI, which operates in controlled virtual environments, Physical AI 
interacts directly with the real world, in which system failures can lead to immediate and potentially 
catastrophic consequences. Robust measures are essential to guarantee the three pillars of 
security, resilience, and safety—the foundations of fostering trust, reliability, and widespread 
adoption in industries like robotics, autonomous vehicles, and industrial automation. For drones, 
which operate in fast-changing three-dimensional spaces—often close to humans and critical 
infrastructure—this hardiness is especially important.30 

Security is the first line of defense against cyber threats. Physical AI systems process data from 
diverse sources (including sensors, cameras, and networked environments), which increases 
their exposure to cyberattacks. Drone systems are particularly vulnerable to cyber threats 
because they rely on multiple, such as GPS, cameras, LiDAR, and networked communication 
systems.31 A drone system breach can compromise data integrity, disrupt operations, or even 
cede control to malicious interlopers. For example, a GPS spoofing attack could mislead a drone 
into navigating to an incorrect location, while a compromised camera feed could obscure 
obstacles or threats. A breach can compromise data integrity and lead to unsafe or erroneous 
actions. For instance, an adversarial attack on an autonomous car’s sensor data could 
misrepresent its surroundings, potentially causing an accident. Advanced cybersecurity measures 
like encrypted communication, secure data pipelines, and real-time threat detection are essential 
to mitigate such risks. 

Resilience is key to maintaining system functionality in dynamic and uncertain environments. 
Physical AI systems must adapt to unforeseen challenges, such as sensor failures or unexpected 
external conditions, without significant performance degradation. For instance, a drone inspecting 
a disaster zone must detect and compensate for a malfunctioning sensor or a sudden change in 
wind conditions to continue its mission safely.32 This requires robust, fault-tolerant mechanisms, 
adaptive decision-making frameworks, and the ability to switch to alternative navigation methods 
(e.g., visual or inertial navigation) when primary systems fail. By leveraging Physical AI, drones 
can learn dynamically from their environment and improve their resilience. 

Safety is a non-negotiable requirement, given these systems' physical impacts on, and frequent 
interactions, with humans. Failures in safety-critical applications—in autonomous vehicles or 
industrial robots, for example—can produce accidents, injuries, or fatalities. Safety demands 
rigorous testing, validation, and compliance with international standards (such as ISO 2138433 for 
UAV operations). Embedding fail-safe mechanisms—e.g., emergency landing protocols, collision 
avoidance systems, and real-time monitoring—can minimize operational risks. Additionally, 

 
31 Altawy, Riham, and Amr M. Youssef. "Security, privacy, and safety aspects of civilian drones: A survey." ACM Transactions 
on Cyber-Physical Systems 1.2 (2016): 1-25. 
32 Andreoni, Martin et al. "Towards secure wireless mesh networks for UAV swarm connectivity: Current threats, research, and 
opportunities." 2021 17th International Conference on Distributed Computing in Sensor Systems (DCOSS). IEEE, 2021. 
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runtime assurance frameworks34 can continuously verify a drone’s actions to ensure they remain 
within safe parameters. 

To address these challenges, emerging technologies offer holistic approaches via runtime 
assurance frameworks, secure-by-design principles, and adaptive learning algorithms. Drones 
can achieve greater reliability and operational safety by embedding security, resilience, and safety 
during development. For example, integrating multimodal AI can heighten a drone’s ability to 
detect and respond to threats, while active inference algorithms can improve its ability to adapt to 
dynamic environments. These advancements are essential for unlocking the full potential of 
drones in applications ranging from defense and surveillance to environmental monitoring and 
disaster response. 

 

Building a safer, more secure, and resilient foundation 

 
The Secure System Research Center (SSRC) has been developing a zero-trust framework to 
improve autonomous systems' security, safety, and resilience for critical applications such as 
drones. The core idea is to extend traditional zero-trust concepts beyond security to strengthen 
safety and resilience as well. Here, we explore how improving embodied AI's perception, action, 
memory, and learning loops can augment these vital characteristics in drones, swarms, and 
generally in autonomous systems operating alone or in concert.  
 
 

Security 
 
Secure drones have been trained to recognize the early signs of anomalous flight patterns, 
changes in their environment, or compromised communications. They mount mitigating 
responses to limit or eliminate the threat and dynamically learn how to respond more efficiently 
and effectively in the future.  

• GPS spoofing detection: A drone could learn to recognize discrepancies between GPS 

signals, environmental cues from cameras, and inertial measurement units to prioritize the 

most trustworthy data streams.  

• Novel cybersecurity attacks: UAVs could learn to identify unusual communication 

patterns that indicate hacking attempts and then evaluate and undertake 

countermeasures, such as dynamic channel switching, updating encryption schemes, or 

returning home. 

• Behavioral Analysis: The autonomous systems could learning to identify unusual 

patterns of behavior in the drone swarm, patterns that might indicate security breaches, 

and then act to lock out the subverted unit, force it to land, or return home safely.  

 
33 Phadke, Abhishek, and F. Antonio Medrano. "Towards resilient UAV swarms—A breakdown of resiliency requirements in 
UAV swarms." Drones 6.11 (2022): 340. 
34 ISO 21384-3:2023. ISO. https://www.iso.org/standard/80124.html  
35 Unlock the Future of Autonomous Drones with Innovative Secure Runtime Assurance (SRTA), Free Technology Innovation 
Institute White Paper. 2024, https://engineeringresources.spectrum.ieee.org/free/w_tecm20/ 
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Resilience 
 
Dynamic approaches help drones and swarms identify signs of malfunction, adapt to inclement 
weather, and adapt to challenges more cohesively.  
 

• Fault tolerance and recovery: This requires teaching a drone to perceive internal signals 

indicating malfunction and then discover counter-actions, such as adapting control 

systems to maintain stability or prioritizing critical functions in the field. On a longer time 

horizon, these systems could also be trained to predict component failures and optimize 

replacement schedules to lower costs or reduce the risk of catastrophic failure during 

critical missions.  

• Environmental adaptation: This trains drones in multiple actual and simulated 

conditions—such as high winds, low or high temperatures, or rain—to dynamically learn to 

plot safer flight paths, alter motor control settings, or decide when to return home safely. 

Adaptive path planning algorithms could enable drones to navigate around unexpected 

obstacles or different types of terrain, such as cities, buildings, forests, or caves, more 

safely.  

• Swarm resilience: This requires developing adaptive algorithms that allow a group to 

adapt and respond as a cohesive unit. For example, better swarm resilience could improve 

distributed decision-making, wherein each drone might process high-resolution data locally 

and share appropriate summaries to enhance overall understanding without centralized 

control. Also, the unit could be trained to dynamically reallocate tasks in case of a drone 

failure or compromise. The long-term goal is to support emergent behaviors that enhance 

collective resilience without explicit programming.  

 

Safety 
 
In the quest for safer drone operations, the goal is to develop dynamic algorithms that let UAVs 
pursue goals while they avoid collisions, interact safely with humans, and carry out ever more 
effective emergency protocols. 
 

• Collision avoidance: This requires improving sensor fusion algorithms to perceive and 

create a 3D model of the environment more accurately. Dynamic predictive path planning 

allows a drone to anticipate the movement of dynamic obstacles, such as birds or other 

drones, and adjust their trajectory accordingly. Drone fleets could also be trained to 

communicate their intentions and coordinate their movements to avoid collisions with each 

other and other obstacles.  

• Safe human interaction: This requires teaching drones to predict human movements to 

avoid collisions while working together. This could include learning to recognize gestures 

in noisy environments or identifying facial expressions and body language indicative of 

distress.  

• Emergency protocols: This teaches drones how to cope with equipment or network 

failures. More dynamic algorithms could help UAVs identify safe landing zones through 
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visual analysis and population-density assessments to reduce risks to drones, property, 

and people alike. Emergency protocol algorithms could also learn to continuously update 

an optimal return path based on environmental and internal conditions. In cases where 

collision is unavoidable, they might also learn ways to minimize damage to property or the 

environment.  

 
Figure 9: Zero-Trust Framework for Embodied AI in Drone Swarms  

 
 
 
 
 
 

Applications 

 
Various embodied AI implementations could enhance many existing applications and stimulate 
new ones. EAI operating at the individual-unit level could help an independent drone discover 
more efficient and precise ways of perceiving the world, taking actions, and dynamically improving 
the effectiveness with which it performs its mission. Better decentralized and distributed 
algorithms at the swarm or fleet level could improve collective results. Distributed algorithms might 
also be run across drones in the field to with centralized agents and guide actions beyond the 
scope of an individual drone. Here are some examples of how these approaches could work in 
practice:  
 
 

Disaster response and management  
 
Search and rescue scenario: Drones in the field could learn to more efficiently cover difficult 
terrain and locate survivors, finding signs of life using combinations of video, thermal, acoustic, 
and electromagnetic sensors. Here, the focus is on adaptive algorithms that accurately detect 
survivors after a fire, earthquake, explosion, tornado, or flood. Video algorithms could spot 
clothing or bodies; thermal algorithms could detect heat signatures of bodies; acoustic algorithms 
could listen for breathing or cries for help; and electromagnetic algorithms would look for signs of 
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heartbeats amid many kinds of rubble. Multimodal algorithms could combine these modalities in 
any number of conditions. Embodied AI approaches could help these algorithms strengthen 
themselves by combining past sensor data that indicates survivors and special simulators that 
mimic different types of disasters, reproducing the physical, acoustic, and environmental inputs 
that could affect sensor performance.  
 
Dynamic mapping and modeling: Different disasters can disrupt terrain and infrastructure in 
distinct ways, confounding rescue efforts by obstructing roads with debris or floodwaters, washing 
out bridges, or leaving chemical spills, leaking gas, live electrical wires, or fires in their wake. 
Dynamic learning can help drones and centralized control systems to correlate raw sensor data 
to build maps and 3D models. They could also guide fire teams and fire-suppression drones to 
pinpoint hot spots for more effective fire control. Centralized systems might also learn how to 
learn dynamically to optimize rescue efforts and improve speed and safety.  
 
Communication relays: Drone swarms can also serve as communication relays that learn to 
adjust their locations, signal levels, and radio frequencies to improve coverage over a disaster 
area or communicate with critical recovery teams. Here, the keys are, first, developing data sets, 
models, and simulations that accurately represent radio propagation and attenuation and, second, 
training more capable drone and swarm controllers.  
 
 
 
 
 
 
 
 

Infrastructure inspection  
 
Autonomous navigation: Inspecting the thousands of kinds of civil, military, transportation, 
communications, and other infrastructure inspection requires that drones capture high-resolution 
data by flying near hazards like powerlines, working roads, electric railways, dams, bridges, 
delicate equipment, and other complex environments. Simulations of these environments could 
guide development of more capable drone control systems that can capture sufficient imagery or 
other data to assess an asset properly.  
 
Defect detection: Drones do not necessarily have to see defects directly to build more competent 
and adaptive inspection processes. For example, they might be trained to identify secondary signs 
of damage, acting as the eyes and ears for of centralized, data-center-based embodied AI agents. 
Damage spotted this way would be confirmed later, perhaps by human investigators, or by 
simulations that produce the same tell-tale signs. EAI agents could also dynamically learn the 
most cost-effective combination of sensors needed to identify defects characteristic of common 
modes of damage.  
 
Predictive maintenance: As in defect prediction, drones could support predictive maintenance 
as part of a centralized EAI system that is rewarded for identifying optimal maintenance schedules 
for different types of infrastructure. They might weave environmental factors into what they learn 
about inspection schedules and part failures to improve even better inspection programs. Or they 
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might dynamically discover more cost-effective schedules for maintenance and repairs, to fix 
problems before a critical failure. 
 
 
 

Agricultural Optimization 
 
Crop monitoring: Drones and satellites widely use multispectral imaging and statically trained 
algorithms to identify signs of crop distress like disease, pests, and nutrient deficiencies. More 
dynamic embodied AI approaches might learn to identify and correlate signals from newly 
discovered issues to respond to emerging problems faster than previously possible.  
 
Resource management: Individual drones could also reduce resource consumption and runoff 
by learning to pinpoint areas that need fertilizers, pesticides, and water. These algorithms might 
combine a centralized agent that learns how to optimize coverage and timing based on monitoring 
data, soil conditions, crop state, and past yield data. Individual drones could learn better strategies 
for getting pesticides exactly where required.  
 
Yield optimization: Drones could help capture more granular information, enabling centralized 
agents to learn more efficient scheduling algorithms for planting, maintaining, and harvesting 
crops.  
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Technological advancements supporting Embodied AI 

 
Today, EAI innovations come from many directions, and improve multiple functions. New 
algorithms improve how these systems perceive, choose better actions, remember, and learn. 
And many ancillary advances may contribute to the development or growth of each of these new 
algorithms. For example, the evolution of edge infrastructure supports increasingly distributed 
EAI. Here are just four of the most critical innovations that underpin EAI advances: 
 

Edge computing:  
Increasingly capable onboard processing units enable real-time AI computations without relying 
on external servers, thus reducing latency and enhancing security. As previously noted, many 
EAI use-cases benefit from combining drones with centralized compute infrastructure that can 
help correlate field perceptions and insights using more performant hardware. New low-power 
chips, such as NVIDIA Jetson AGX and Qualcomm Snapdragon Flight, can improve a drone's 
ability to perceive essential correlations in the field or to control motors, radios, and other onboard 
equipment more effectively. These chips can also plug into edge computing frameworks to offload 
planning and coordinating tasks so that the swarm further optimize its actions and strategies.  
 

Advanced sensors and actuators 
Innovations in sensors and actuators are improving a drone's ability to gather more precise 
information and take more granular action. These advances include cheaper, more accurate 
sensors to capture visual, thermal, acoustic, environmental, and electromagnetic information. 
New multimodal models are improving the ability to distill correlations from multiple sensor 
families to enhance perception and understanding. Actuators are improving, too, including 
cheaper and more efficient motors that can support navigating through more challenging 
environments with less power. 
 

Reality capture 
The first generation of drones focused on capturing raw video or pictures. Today, however, many 
EAI use cases need to make sense of 3D or 4D models (in space and in space and time) that 
improve understanding and produce better-laid-out actions. Over the last few of years, promising 
innovations in NeRFs and Gaussian splats have improved techniques for translating raw video or 
image data into 4D models, and doing it much more efficiently than previous approaches that 
relied on photogrammetry or LIDAR. At the moment, reality capture focuses on visible data. 
Today’s research, however, suggest combining multi-spectral, thermal, and acoustic data to 
inform richer 3D models for new use cases.  
 

World models 
In EAI applications, more precise data sets—the products of prior experiences and granular world 
models—are the equivalent of the big data that helped accelerate LLM development. 
Researchers have already devoted considerable work to building rich 3D world models that can 
support manifold use cases. Much of this research has focused on relatively simple applications 
like navigation in realistic 3D virtual worlds. Future work could use new representations of novel 
characteristics under varied circumstances, factors like radio propagation, richer mechanical 
physics, and chemical or plant health models.  
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Challenges 

 

Model interoperability 
EAI is informed by various models that represent distinct aspects of the world. There are good 
reasons for this. For example, simply simulating a 3D layout is far more efficient than other models 
that might characterize radio propagation, internal states, or mechanical properties. In the case 
of drones, these added components could include the physical layout of the environment, radio 
frequency properties, and the significance of entities revealed by various kinds of sensor data. 
The IEEE P2874 spatial web, architecture, and governance working group is developing a 
framework to help unify these different world descriptions.35 And, the new Hyperspace 
Transaction Protocol improves interoperability through different semantically compatible 
representations of things.  
 

Neural network architectures 
Embodied agents need to learn more efficient, accurate, and precise representations of the real 
world to understand better, to build representations that inform better actions. Today, however, 
most deep learning approaches are built on multilayer perceptron (MLP) frameworks—inspired 
by human and animal minds, yet in need of better approximations. The recent discovery of 
Kolmogorov Arnold Networks (KAN)—which models neural network architectures as 
mathematical functions—suggests a path toward better models that more learn to represent 
physical phenomena with partial differential equations, and do it 10,000 times more efficiently 
than existing approaches. However, KANs struggle with noisy data and require a sequential 
training process that is harder to scale than MLP approaches. In the long run, Kolmogorov Arnold 
Networks could inspire even newer neural network architectures for embodied AI.  
 

Regulatory compliance 
The aviation world is a patchwork of regulatory frameworks, and drones must comply with every 
set of rules they encounter in flight as regulations shift from place to place, time to time, mission 
to mission, and operator to operator. Rules regarding flight zones, altitudes, and privacy are just 
the beginning. Regulations can change in disaster situations, or with the weather, or with changes 
across jurisdictions. The big challenge here lies in finding better ways to identify the rewards and 
penalties that balance regulations against efficient operations. Trying to meet static regulatory 
requirements is hard. Meeting evolving regulatory priorities is harder. Developing better EAI 
algorithms that could adapt to these changes is essential.  
 

Ethical and social considerations 
All AI systems come with various challenges. These include dealing with biases and gaining social 
acceptance. Bias may stem from priorities established by company executives or the inclinations 
of developers. There is a growing concern that company-focused objectives may clash with wider 
societal acceptance of embodied AI. For example, SMAI EAI for social media might improve click-
through rates while increasing dissent and hate speech. Similarly, an EAI system that streamlines 
logistics throughput could also come at the cost of worker mental health and familial and 
community well-being. Here is the challenge: it is relatively straightforward to formalize company 
objectives into policies, we must balance these with more ephemeral objectives like societal 

 
36 “IEEE Draft Standard for Spatial Web Protocol, Architecture and Governance,” IEEE P2874/D3.1, June 2024, pp. 1–185, Jun. 
2024, Accessed: Mar. 02, 2025. [Online]. Available: https://ieeexplore.ieee.org/document/10557550 
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health and employee well-being. In the case of drones, responses to issues like these could 
include improving the EAI’s ability to detect terroristic and anti-social behavior, while balancing 
these abilities against social concerns about Big Brother oversight.  
 

Sim-reality gap 
Innovations in EAI rely on training models in simulated worlds. TII research has revealed that 
many of the resulting algorithms don’t produce the same results in real-world settings that they 
did in silico. This gap could arise from noise inherent in real-world data and the fuzziness of 
attempts to make sense of it. Or the gap may stem from poor representations of the real world, 
or from limitations on the underlying algorithms. Future research needs to address the underlying 
causes of these discrepancies and identify better ways of closing this gap.  
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Conclusion  

 

 
Embodied AI promises to yield ever-more-capable control systems for drone and other 
autonomous AI systems. We are counting on EAI to significantly improve the security, resilience, 
and safety of individual drones and drone swarms. And innovations in EAI algorithms inspired by 
recent progress in GenAI could also improve real-time adaptation and intelligent collaboration. 
At the same time, we need more research to find more-efficient, more-practical ways to integrate 
advanced sensors, edge computing capabilities, and sophisticated machine learning algorithms—
all to push the envelope of what drones can achieve. We are still in the early stages of applying 
some seminal lessons of GenAI to embodied AI to bolster applications in areas like disaster 
response, infrastructure inspection, or agriculture operations.  
If we are to have a part in building any of the best, most inclusive of possible futures, our research 
must balance drones' computational and energy efficiency with diverse regulatory requirements 
and myriad ethical considerations. This will require balancing potential applications of EAI in drone 
swarms and distributed controllers with clear social and legal imperatives. 
Also, it's essential to consider how EAI innovations promise to improve cyber security, safety, and 
resilience. GenAI's success suggests a way to evolve EAI so it plays a pivotal role in shaping the 
future of drone technology. However, this will require figuring out how to address all the 
challenges of responsibly harnessing the power of these new tools, by building solutions that 
simultaneously conform to government imperatives, produce company profits, and serve human 
well-being.  
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