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Flow cytometry is a technology used to measure the physical and chemical features of 

individual cells or particles and provides information about the size and complexity of the 

cells. In brief, a sample of fluid-suspended particles is injected into the instrument and 

passed, single-file, through a laser beam. As the cells pass through the laser, they absorb, 

refract, and emit light which is detected by an array of detectors. Furthermore, flow cy-

tometry allows the identification and quantification of an abundance of specific cell types 

by attaching fluorophores to monoclonal antibodies that recognize cell-type specific pro-

teins. Spectral flow cytometry goes a step further as it provides a “spectral fingerprint”, 

allowing for spectral unmixing and the detection of many more fluorophores simulta-

neously via multiple lasers, with each fluorophore being detected by multiple detectors. 

This allows for the detection of over 35 markers from a single tube assay, improving the 

resolution and increasing the ability to distinguish hard-to-identify cell populations within 

the sample. In clinical laboratories, the technology is most used to support the diagnosis 

of immunodeficiencies, hematologic malignancies, and responses to therapy; to monitor 

the progress of stem cell transplants; and to manufacture CAR T cells.

The first commercial spectral flow cytometer was developed by Sony. The device original-

ly used an array of prisms to disperse the collected light across the sensors. However, the 

newer model, the ID7000 analyzer, now uses a grating for a more uniform dispersion of 

light across the sensor arrays. This offers several advantages over conventional flow cy-

tometry, including the ability to detect more fluorophores, the ability to generate deeper 

phenotypic datasets through stitched panels, and increased accuracy from eliminating 

autofluorescence as a variable. Additionally, spectral flow cytometry has the potential 

to enable systems biology analyses of immune cell networks that could reveal hidden 

patterns or features of immune system dysregulation. Spectral flow cytometry also has 

shorter set-up times and is easier to use in research settings. 

This collection of peer-reviewed articles aims to showcase how spectral flow cytometry is 

a powerful and versatile technology for analyzing complex cell populations. The collec-

tion begins with a study by Nolan [1] that reviews the origins, current state, and future of 

spectral flow cytometry. He discusses how the technology has evolved from being used 

by individual researchers to being adopted by the mainstream as a way of analyzing the 

multiparameter immunophenotyping of immune cells. He also highlights the current 

instrumentation and software available and speculates on how the technology could be 

used in the future. 

Introduction
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In a review article by Novo [2], the differences in data acquisition between traditional 

and spectral flow cytometers are explained, and how these differences allow for more 

accurate data analysis through the use of mathematical tools referred to as ‘unmixing’. 

The article also provides an overview of the different mathematics and theories between 

traditional compensation and unmixing to better explain how the use of newer methods 

can provide a more in-depth analysis of data.

Finally, Monard [3] reports on the various challenges associated with using fluorescent 

proteins (FPs) in biological research and the potential solutions to these challenges. He 

explains how the introduction of full spectrum flow cytometers has allowed for the 

separation of at least six FPs, but the laser wavelengths of commercial instruments are 

not ideal for all FPs. He discusses the need for single-color controls and the expense and 

inconvenience associated with producing colonies of animals expressing each FP. Finally, 

he describes a procedure that can be used to produce and purify FPs and couple them to 

polystyrene microspheres, which can be stored and used without any special equipment 

or skills.

Through the concepts and applications presented in this article collection, we hope to ed-

ucate scientists on the recent advances in the use of this technology. For more informa-

tion, we encourage you to visit Sony to explore more options to enhance your research. 

Róisín Murtagh 

Editor at Wiley Analytical Science

https://www.sonybiotechnology.com/us/blog/introduction-to-spectral-flow-cytometry/
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Abstract

This special issue of Cytometry marks the transition of spectral flow cytometry from

an emerging technology into a transformative force that will shape the fields of cyto-

metry and single-cell analysis for some time to come. Tracing its roots to the earliest

years of flow cytometry, spectral flow cytometry has evolved from the domain of

individual researchers pushing the limits of hardware, reagents, and software to the

mainstream, where it is being harnessed and adapted to meet the analytical chal-

lenges presented by modern biomedical research. In particular, the current form of

spectral flow technology has arisen to address the needs of multiparameter immuno-

phenotyping of immune cells in basic and translational research, and much of the cur-

rent instrumentation and software reflects the needs of those applications. Yet, the

possibilities enabled by high-resolution analysis of the spectral properties of optical

absorbance, scatter, and emission have only begun to be exploited. In this brief

review, the author highlights the origins and early milestones of single-cell spectral

analysis, assesses the current state of instrumentation and software, and speculates

as to future directions of spectral flow cytometry technology and applications.

K E YWORD S

detector array, dispersive optics, excitation-emission matrix, unmixing

1 | INTRODUCTION

This special issue of Cytometry marks the transition of spectral flow

cytometry from an emerging technology into a transformative force

that will shape the fields of cytometry and single-cell analysis for

some time to come. Tracing its roots to the earliest years of flow cyto-

metry [1], spectral flow cytometry has evolved from the domain of

individual researchers pushing the limits of hardware, reagents, and

software to the mainstream, where it is being harnessed and adapted

to meet the analytical challenges presented by modern biomedical

research. In particular, the current form of spectral flow technology

(referred to as “Full Spectrum” Flow Cytometry in the title of this

Issue) has arisen to address the needs of multiparameter immuno-

phenotyping of immune cells in basic and translational research, and

much of the current instrumentation and software reflects the needs

of those applications. Yet, the possibilities enabled by high-resolution

analysis of the spectral properties of optical absorbance, scatter, and

emission have only begun to be exploited, and the field is still in its

infancy. In this brief review, the author highlights the origins and early

milestones of single-cell spectral analysis in flow, assess the current

state of instrumentation and software, and speculate as to future

directions of spectral flow cytometry technology and applications.

2 | BEGINNINGS

The roots of spectral flow cytometry, as for many things fluorescence,

can be traced to the work of Gregorio Weber [2], who pioneered the

use of fluorescence to study biological systems. Weber, working at

the Universities of Sheffield and Illinois, established the conceptual

and practical underpinnings of bioanalytical fluorescence spectros-

copy, integrating chemistry, physics, and engineering to produce dyes,

instruments, and experimental approaches to study systems ranging

from proteins to cells [3]. At about the time Fulwyler was building the

first single-cell sorter [4], and some years before the first fluorescence

flow cytometers [5–7], Weber, recognizing the wealth of information

Received: 6 December 2021 Revised: 13 April 2022 Accepted: 22 April 2022

DOI: 10.1002/cyto.a.24566

© 2022 International Society for Advancement of Cytometry. Cytometry. 2022;101:812–817.wileyonlinelibrary.com/journal/cytoa
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contained in the excitation and emission spectra of fluorescent com-

pounds, described the determination of the number and abundances

of multiple fluorescent species in a mixed sample using the excitation-

fluorescence (EF) matrix [8]. In the years that followed, this approach,

most often referred to as excitation-emission matrix spectroscopy,

inspired the development of new instrumentation for rapid spectral

analysis [9, 10] and data analysis treatments [11, 12] that were foun-

dational for the fields of chemometrics and biomedical spectroscopy.

More than 50 years later, these principles can now be applied to mea-

surements of individual cells.

3 | EARLY WORK

The first published attempts to measure the spectra of individual cells

in flow was reported by Wade and colleagues [13] who used grating-

based spectrometers to disperse light collected from a flow cell onto

vidicon detectors, arrays of silicon-intensified photon counters that

provided sensitive detection with (relatively) fast single integration

times (�10 ms). These systems were used to measure the chlorophyl

autofluorescence of blue green algae and cultured mammalian cells

stained with the nucleic acid stain propidium iodide and fluo-

rescamine, a fluorogenic amine-reactive dye. The systems were oper-

ated in a “continuous” mode, in which the signal from many cells was

accumulated to obtain a total, or average, spectra of all the cells that

passed the detector (�20,000 cells in �20 s), and in “gated” mode, in

which data acquisition was triggered by the signal from a separate

photomultiplier detector to measure the spectra of individual cells.

These demonstrations served as proofs of principle but were ulti-

mately limited by the cycle speed of the vidicon spectral detectors

available at the time.

In the years that followed, there were several attempts to adapt

fluorescence spectral detection capabilities of flow cytometer-based

instruments. Steen and Stokke [14, 15] used a scanning mon-

ochromometer adapted to a commercial flow cytometer to make

sequential measurements of cells at different emission wavelengths to

produce an average spectrum of a cell population stained with

Hoechst 33258. A decade later, Asbury and van den Engh [16]

reported on a similar, monochromometer-based approach to measure

the spectra of sperm cells stained with a number of different nucleic

acid stains. At Los Alamos, Buican [17] developed a Fourier-transform

flow cytometer that used a high-speed interferometric approach to

determine the intensity spectra of individual particles in a flow sys-

tem, though in practice limited signal required signal averaging of

many particles. Both of these approaches employed PMTs as detec-

tors, which enabled the rapid measurement of many cells, but interro-

gating only one emission band at a time.

By the mid-1990s, steps toward the precursors of the modern

spectral flow cytometers were in evidence. Gauci and colleagues [18]

used a prism to disperse light for the flow cell over a 512-element

intensified photodiode array, triggered by a light scatter signal, to

measure the spectra of alignment beads, as well as individual Dic-

tyostelium cells stained with FITC, PE, or Cy3. The rate of

measurement of individual particles in this system was limited by the

frame rate (62.5 Hz) of the detector.

Fuller and Sweedler [19] used a grating to disperse light over a

CCD array to detect the spectra of individual synthetic lipid vesicles

prepared with fluorescein- or rhodamine-labeled lipids, excited by two

different excitation lasers. The CCD format, 1024 � 256 pixels, pro-

vided sub-nanometer spectral resolution and was operated in a con-

tinuous mode, and the detector output was analyzed post-acquisition

to identify events, which were identified based on their emission

spectra.

Dubelaar [20] integrated a grating spectrometer with a multipixel

hybrid PMT array to measure light scatter and fluorescence from

algae in an autonomous flow cytometer designed for remote measure-

ment of phytoplankton in seawater. This detector employed a seven-

pixel array but used only three of the pixels to measure light scatter

and two fluorescence emission bands. This instrument also recorded

the signal pulse shape of each event, for each channel.

While these flow cytometry instrument developments were

occurring, flow cytometry applications, especially multicolor immuno-

phenotyping of lymphocytes and other immune cells [21, 22] were

driving the development of conventional flow cytometer instruments

to ever higher number of lasers and detectors. This, along with an

expansion in the number of different fluorescent conjugates for anti-

body labeling and software tools to facilitate data analysis [23, 24],

characterized so-called polychromatic flow cytometry [25]. Limitations

in the numbers of probes that could be resolved by conventional flow

cytometers inspired mass cytometry using lanthanide-conjugated anti-

bodies [26] and, ultimately, the spectral flow cytometers we see

today.

4 | THE MODERN PERIOD

By the early 2000s, advances in detector technology began to provide

both the speed and resolution required for practical application in

cytometry applications. PMTs were the photodetector of choice for

demanding applications like flow cytometry, owing to their high gain

and fast response times. Robinson and colleagues [27–30] used a

grating to disperse light over a 32-channel multianode PMT array to

demonstrate high-speed single-cell spectral analysis. They used princi-

pal components analysis (PCA) and, later, least squares unmixing [30],

to resolve differently stained particles and cells. The multianode PMT

detector-based approach was later adapted by Sony in the first com-

mercial spectral flow cytometer [31], which used an array of prisms to

disperse collected light across the multianode PMT.

Multianode PMTs provide the characteristic advantages of PMT-

based detection, including speed and high gain, but also limited quan-

tum efficiency and a limited number of channels [32] making them

less suitable for applications requiring high sensitivity or high spectral

resolution. Spectroscopy-grade CCD-type detectors detectors, in con-

trast, generally provide higher quantum efficiency and a greater num-

ber (thousands) of detector elements in a high-density physical

arrangement that enables high spectral resolution. Goddard and

NOLAN
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colleagues used a volume phase holographic grating to disperse light

over a 128 � 1024 pixel CCD array to demonstrate high QE (>80%),

high-resolution (�1 nm) spectral measurements of calibrated beads

and propidium iodide-stained mammalian cells [32]. Subsequent

refinement of this approach enabled measurement of high sensitivity

and high-resolution (<1 nm) fluorescence and Raman spectra [33–37],

including for measurement of SERS from individual Au and Ag

nanoparticles [38] and the multicolor immunophenotyping of PBMCs

using least squares unmixing [39]. These CCD-based systems could

provide very high sensitivity and spectral resolution, though the read-

out speed of detectors available at the time generally limited particle

measurement rates to �1000/s. Newer CCD (Andor iXon) and

CMOS-based (Hamamatsu linear CMOS) detectors can support acqui-

sition rates >10,000/s.

In the decade following release of the first commercial flow

cytometer designed to enable spectral analysis, several additional

instruments have come onto the market, each with a distinct hard-

ware approach. The original Sony Spectral analyzer used an array of

prisms to disperse the collected light across an array of regularly spa-

ced sensors on a multianode PMT. Several new instruments have

taken approaches that resemble conventional instruments in that they

use dichroic filters to select emission bands that are detected using

avalanche photodiodes (APDs), as in the Cytek Aurora and Northern

Lights, or PMTs, as in the BD Symphony A5 SE and Thermo Big Foot.

The latter instrument is a sorter, as is the Aurora CS, which demon-

strates that the problem of performing unmixing in real-time to make

sort decisions has been solved, at least for simple unmixing

approaches. Meanwhile, the newest Sony ID7000 analyzer uses a

grating, rather than prisms, for more uniform dispersion of collected

emission across its sensor arrays.

The diversity of approaches illustrated by this current generation

of spectral instruments highlights the reality that spectral flow cyto-

metry is more about the data processing and analysis than the hard-

ware used to collect the data. While the faithful representation of

emission spectra provided by gratings and linear detector arrays is

attractive and useful for spectroscopy-focused applications, simple

unmixing to estimate the abundances of known spectral components

in a mixture does not require that spectral resolution be high or uni-

form across the spectral range, and modest and variable spectral reso-

lution is suitable for performing lymphocyte immunophenotyping, for

example [40–45]. In fact, data from conventional instruments

designed for use with traditional compensation can be analyzed in a

“pseudo-spectral” manner [46], in which the signals from all detectors

are used to form a spectrum (albeit of low and variable resolution) for

each fluorochrome that can be used to unmix and determine the

abundance of each fluorophore from a mixture spectrum. As Novo

describes elsewhere in this issue (ref), compensation is a “square
matrix” variant of more general spectral unmixing problems where

there are more detectors than fluorophores/components, and

unmixing can be applied to data from any instrument where this is the

case. Conversely, some instruments designed for spectral analysis pro-

vide for the data to be saved in a “virtual filter” mode, where several

individual spectral channels are combined to form a single intensity

value that approximates that which would be obtained from a conven-

tional instrument. In its more general form, unmixing of single particle

emission spectra excited at multiple excitation wavelengths can be

recognized as the single particle implementation of the excitation-

emission matrix spectroscopy approach to fluorescence first described

by Weber.

5 | THE FUTURE

Progress in the development and translation of any technology is

driven by the needs of the market. While the roots of any transforma-

tive technology can be traced to the curiosity and interests of individ-

ual researchers, its further development into practical (and

commercial) reality depends on its ability to solve important problems

faced by significant numbers of users. High-dimensional cell analysis

has long been a dominant driver for flow cytometry technology devel-

opment, and its influence on spectral flow cytometry development is

no exception. Now, as has been the case for much of the field's exis-

tence, most commercial flow cytometers are designed to

immunophenotype lymphocytes using fluorescent antibodies and pro-

bes, and the current generation of spectral flow cytometers appear to

excel at this. Much of the recently published work using spectral flow

cytometry has focused on the optimization of immunophenotyping

staining panels and protocols, and their validation by comparison with

conventional polychromatic and mass cytometric approaches [40–47].

The advantages of simpler workflows and improved resolution com-

pared to non-spectral analysis are spurring rapid adoption in aca-

demics and industry [47], and we might expect future spectral flow

cytometry development to address outstanding challenges in multi-

color immunofluorescence not possible with a conventional “square-
matrix” approach.

Among the challenges that arises in high-dimensional flow cyto-

metry is the deviation of a particular conjugate from its ideal or typical

spectrum. For example, tandem conjugates can decompose [48] such

that their spectra change, and unexpected probe-probe interactions

between molecules bound in or on a cell can confound linear unmixing

models that assume static component spectra. However, if the devia-

tion from ideal can be measured and understood, it should be possible

to apply fitting algorithms that account for this behavior using alter-

nating least squares or other approaches that allow the base spectra

to vary, within constraints [49]. Such approaches might be the basis of

algorithms that could accommodate some of the common sources of

immunofluorescent conjugate variation.

Cellular autofluorescence has long been viewed as an undesired

source of background that interferes with the signal from dim

fluorophores and/or low abundance markers, and much effort has

been directed at “correcting” measurements to account for

autofluorescence [50–54]. Another perspective considers that cellular

autofluorescence, which can arise from several endogenous metabo-

lites, amino acids and other molecules [55–57], is a rich source of

information about cell state [58, 59]. Spectral measurement presents

the opportunity to unify these perspectives by enabling the

NOLAN
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estimation of the abundance of both endogenous intrinsic

fluorophores and exogenous fluorescent conjugates. Work toward

this is at a very early stage [41, 60], but unmixing approaches that

consider individual spectra of major autofluorescence components

would in principle enable those immunofluorescence fluorophores

whose spectra overlapped to be detected at lower abundances.

Yet, immunophenotyping is only one cytometric measurement,

and flow cytometry technology is useful for more than lymphocyte

analysis. Fluorescence resonance energy transfer (FRET) can be used

to estimate the proximity of fluorophores and/or fluorescent anti-

bodies on or in a cell [61–63], has also been exploited to design intra-

cellular molecular sensors whose emission spectra change upon

analyte sensing [64–66]. Like immunofluorescence, FRET measure-

ments can be compromised by autofluorescence [53], and spectral

unmixing approaches may enhance high-resolution FRET measure-

ments in the presence of other spectrally overlapping fluorescence

signals [65].

Among the application areas that might be expected to drive the

continued evolution of spectral flow cytometry are the resolution of

dim signals from various sources of background. For quantitative mea-

surements, sensitivity is generally limited by background and, for cells

and other biological particles, the predominant background is intrinsic

autofluorescence of various origins. This has implications for the mea-

surement of low abundance, “dim” antigens on cells, but also for the

detection of very low abundance targets (e.g., single molecule) on bio-

logical nanoparticles such as viruses, virus-like-particles (VLPs), and

extracellular vesicles (EVs) [67]. For very dim particles,

autofluorescence might be on the same order as optical and electronic

noise, which may have their own spectral characteristics, and thus can

be accounted for as either fixed or variable background components

in an unmixing process. Moreover, signals from fluorophores of inter-

est and from various sources of background can have their own dis-

tinctive variances, for example Gaussian-type noise distributions in

sources of electronic background versus Poisson-dominated variance

in dim signals from small number of photons produced by small num-

bers of labels. The accurate measurement of these background signals,

and their variances, should improve fluorescence detection limits [30].

In conclusion, we can anticipate that future generations of flow

cytometers, whether designed for very high-dimensional analysis of

cells or for single molecule sensitivity and resolution, will be spectral

instruments that operate on the full excitation-emission matrix that

Weber described more than 50 years ago [8].
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Abstract

Traditionally, flow cytometers acquired data using the same number of detectors as

fluorochromes being measured in the experiment. More recently, spectral flow cyt-

ometers utilize a larger number of detectors than fluorochromes. This seemingly

small difference opens the door to a wide variety of mathematical tools for the calcu-

lation of the true fluorochrome abundances from the raw detector values as com-

pared with traditional compensation. This review will provide a brief overview of the

mathematics and theory underlying traditional compensation and unmixing focusing

on the differences between them and the additional information provided by unmix-

ing approaches.

K E YWORD S

compensation, regression, spectral flow cytometry, unmixing

1 | INTRODUCTION

A flow cytometer (FC) is unique in its capability of quantitatively mea-

suring fluorescence signals from multiple fluorochromes bound to an

individual particle in an extremely short amount of time (<10 μS). This

allows the cytometer to acquire an information-rich data set from

many biological molecules of interest over a large number of particles,

leading to robust statistics and the ability to recognize subtle differ-

ences in within cell populations in an experimental protocol [1].

The general optical configuration of FCs has not significantly

changed in many decades. The FC traditionally measures fluorescence

by utilizing several discrete, highly sensitive photodetectors, primarily

photomultiplier tubes and/or photodiodes. A combination of dichroic

and bandpass filters are arranged in order to limit specific detectors to

collect photons from particular wavelengths. The filters are typically

selected to correspond to the emission peaks of the different fluoro-

chromes that are being used in the experiment, with the conceptual

idea that a particular detector is the “primary” detector for a particular

fluorochrome. Hence the common colloquialism of referring to detec-

tors by the dye they are primarily designed to detect, that is, having a

“FITC detector” or “PE detector,” and so forth. Although the FC may

have more detectors than the number of fluorochromes used in a

given experiment, the instrument was almost always configured such

that there were the same number of detectors active as the number

of fluorochromes being measured.

The problem with this instrument configuration is well described

in the literature [1–3]. In short, due to the wide emission spectrum of

many fluorochromes, photons from a single fluorochrome are

detected in multiple detectors. Thus, it is usually difficult to use the

raw measurement from any individual detector as an indication of the

abundance of any particular fluorochrome. The photons emitted from

a fluorochrome that are detected in the “non-primary” detectors for

that fluorochrome are said to be “spilling over” into these other

detectors, with the conceptual framework being that these photons

are going where they should not be. A correction process, termed

compensation, was devised to either eliminate these “spilled over”
photons and/or “return them” to the detector in which they were

designed to be detected.

For clarity, the standard notation is followed for the equations

within this paper: lower case and bolded variables represent vectors;

upper case and bolded variables represent a matrix and scalars are

lower case, and italicized.
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1.1 | Theory and mathematics of compensation

In early FCs, compensation was performed using analog circuit that

would subtract a fraction of the signal that was measured in one

detector from another detector [1, 4]. The precise fraction to be

subtracted was manually determined by the user by physically

adjusting controls (dials or buttons) on the cytometer itself, accord-

ing to certain heuristics. In 1993, Bagwell and Adams proposed a

model that could mathematically calculate the abundance of an

arbitrary number of fluorochromes across the same number of

detectors [5]. The approach has significant advantages compared

with the previous manual approaches and involved obtaining data

from single-stained controls and using the mean value from each

control in each detector to construct a “spillover matrix.” A rela-

tionship was assumed such that

r¼MaT ð1Þ

where r represents the observed raw detector values from an arbi-

trary particle, M is the spillover matrix for that particle and aT is the

true abundance of each fluorochrome on that particle. Since it is

impossible to measure M for each experimental particle, an average

mixing matrix (MAvg) was experimentally determined. Since r is a mea-

sured value, and both M and MAvg are square matrices, it becomes

possible to solve for aT

aC ¼M�1
Avgr ð2Þ

where M�1
Avg(often called the compensation matrix) is the inverse of

MAvg, aC is the calculated abundance of each fluorochrome on the

particle. This model has been used, essentially unchanged, since the

initial publication. We will be exploring the relationship between the

calculated abundance (aC) and true abundance (aT) throughout this

article. (In an ideal world aC from Equation (2) would equal aT from

Equation (1), however, as described below, this is rarely the case, and

the notation for distinguishing between calculated and true abun-

dances is introduced to reflect that.)

1.2 | Theory and mathematics of unmixing

Independently, other scientific fields, such as geology [6–8], remote

sensing [9, 10], and chemometrics [11] were encountering similar

problems, whereby the measurements arose from a mixture of a

potentially unknown number and abundance of different elements

termed endmembers. From the beginning, the instruments in these

other fields were configured in such a way that the number of detec-

tors (often vastly) exceeded the number of endmembers. Because of

this, there was never the notion that any particular detector was sup-

posed to be the “primary” detector, nor that the end member photons

were “spilling” anywhere they were not supposed to be, which was

the prevalent conceptual framework underlying traditional compensa-

tion [3]. Instead, the mathematics of mixture modeling was utilized,

whereby each detector is assumed to be detecting a mixture of

photons from multiple endmembers, and the mathematics was utilized

to “unmix” the data and calculate the actual abundance of each end

member [12]. The matrix representing the pure spectra of the individ-

ual endmembers was termed the “mixing” matrix, instead of spillover

matrix, but the same basic model as shown in Equation (1) was used.

The key difference is that M and MAvg are not square, but rectangular,

since there are more detectors than endmembers.

More recently, “spectral” FCs (SFC) measuring fluorescence [13]

and Raman scatter [14] have been built in the laboratory [15] and are

now commercially available from several instrument vendors. A

detailed description of their optical and detection schematics is

beyond the scope of this review; however, they all acquire data using

more detectors than there are endmembers in the experiment and

unmix the data using unmixing as opposed to compensation.

1.3 | Contribution of noise to calculated
abundances

There are two important sources of noise in a FC measurement. The

one most familiar to cytometrists is instrument noise (due to noise in

electronics, stray light, etc.) which will be termed εO. The other noise

(termed εM) is the difference between the actual emission from an

individual particle (M) and MAvg that is used in the unmixing mathe-

matics. It is εM that is generally the largest contributor to the “spread”
commonly seen in compensated/unmixed data.

It is important to note that construction of MAvg is similar for both

compensation and unmixing. In general, MAvg is obtained by running

large numbers of single stained controls (cells or beads) and calculat-

ing a mean or median in each detector. After normalization, this

results in an average emission spectrum (emAvg) for each end member

as measured by the instrument for a particular set of detector gains

and optical configuration. By convention, the columns of MAvg repre-

sent the emAvg of each end member, and the rows represent a partic-

ular detector. It is important to note that it is practically impossible for

M of each particle to equal Mavg. Photon emission is a random pro-

cess, governed by Poisson statistics. The short dwell time of the cells

in the laser can result in relatively few photons being emitted and for

the emission profile of individual fluorochromes to deviate signifi-

cantly from average (Figure 1).

Thus, we can define

MDiff ¼MAvg�M ð3Þ

and reformulate Equation (1)

r¼MAvgaT þMDiffaT ð4Þ

we can define εM

εM ¼MDiffaT ð5Þ

as the portion of r resulting from the random differences between the

photons emitted by a particular particle and MAvg. This is a random
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value, it is termed “noise,” similar to any other random signal mea-

sured by a detection system. Defining εO as any other noise (instru-

ment, electrical, light, etc.). A more complete reformulation of

Equation (1) becomes

r¼MAvgaT þ εMþεO ð6Þ

Modern commercial flow cytometers have a highly sophisticated

design such that εO is often negligible for a wide variety of experimen-

tal conditions, the notable exception being the measurement of small

or dim particles. However, aside from collecting a dramatically larger

number of photons per fluorochrome (which is at odds with the other

design parameter of collecting data from large numbers of cells in

short period of time) no technological solution will be able to eliminate

εM since it is intrinsic to the photon emission process itself.

The presence of εM that follows a Poisson distribution causes the

standard linear models used in unmixing/compensation to become

inappropriate, as shall be discussed subsequently. It is now simple to

understand how εM contributes to “spreading” artifacts often associ-

ated with traditional compensation. Ignoring εO and rearranging

Equation (6) yields

r� εMð ÞM�1
Avg ¼ aC ð7Þ

Comparing Equations (7) to (1), it is immediately obvious that aC

only equals aT in the special case that ƐM = 0 (i.e., all endmembers

on the individual particle emitted exactly according to their emAvg),

which rarely happens. In all other cases, the values from εM are

spread throughout the aC according to M�1
Avg such that aC can differ

quite significantly from the true abundances that were present on the

particle.

It is important to note that Equations (2) and (7) are only valid

solutions when MAvg is a square matrix. When MAvg is rectangular,

MAvg
�1 cannot be mathematically calculated, and the solution to

Equation (1) becomes [16, 17].

aC ¼ MT
AvgMAvg

� ��1
MT

Avgr ð8Þ

Where MT
Avg is the transpose of MAvg. It can easily be shown that

when MAvg is a square matrix, Equation (8) simplifies to Equation (2),

highlighting that compensation is special case of a more generalized

mixture model.

2 | BENEFITS OF UNMIXING

Conceptually, the difference between a spectral and conventional FC

is minimal. The distinction can boil down to whether one acquires

(and mathematically utilizes) measurements from a larger number of

detectors than one has endmembers. However, this seemingly small

distinction affords spectral FC many advantages from a data analysis

point of view. In theory, spectral cytometry can collect more photons

from an experiment, compared with conventional flow cytometry,

since there are generally less gaps between the filters in a spectral

cytometer. More photons should result in more accurate measure-

ments and hence better data. However, it is unclear how critical this

benefit is in practice, since typically enough photons are acquired in

F IGURE 1 Differences in emission spectra from multiple bead particles. Data from beads stained with BV-605 were acquired on a Cytek Aurora
flow cytometer and gated on singlets and bright staining. Panel A—the raw spectral data of the gated population. There is a wide distribution in
emissions across the beads. Panel B—the emission were normalized such that the peak of the spectra were identical across all beads. This should
normalize for any differences in the amount of dye present in different beads. In spite of this, there is still a wide variation in the emission profile
across different beads [Color figure can be viewed at wileyonlinelibrary.com]
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either case to obtain data sufficient for the required experimental

precision.

The main benefit (from a data analysis point of view) of having

more detectors than endmembers is that it results in an overdeter-

mined system of equations, which is defined as a system where there

are more equations than unknowns. This is reflected by a rectangular

M. There are two main benefits of an overdetermined system of equa-

tions are: the ability to obtain a measurement of the noise and to

improve the condition number.

2.1 | Additional detectors acting as replicate
measurements

It is an elementary tenet of sampling theory that if one obtains a mea-

surement contaminated by noise it would be unreasonable to pre-

sume the true underlying value is the same as the measured value. To

improve the accuracy of the estimation of the true underlying value

one takes multiple replicate noisy measurements. By understanding

the noise model one can combine these measurements together in

some way (often by simply taking an average) to obtain an accurate

estimate of the true underlying value, even though the individual mea-

surements can be inaccurate. In general, the more replicates one per-

forms, the better the estimation of the underlying value.

A system with more detectors than endmembers is effectively

taking multiple replicates of the same sample. These replicates contain

information regarding both the underlying endmember abundance

and the noise in the instrument. Consider the case of a particle

stained with a single dye, with a known emAvg, measured across multi-

ple detectors. In the absence of any noise, the additional detectors are

irrelevant since the value in any detector can be predicted from the

value in any other detector, simply by applying emAvg. However, if

there is noise, and the noise is independent across the detectors, the

additional detectors provide information about the noise, which can

then be treated appropriately to provide a better estimate of the

underlying abundance of the single stained control. As above, the

more replicates (i.e., additional detectors) the better the improvement

one can make in the abundance estimation.

2.2 | Improvements in the condition number of M

The condition number of the matrix quantifies how changes in the

inputs (r) can affect the output (aC). Starting from Equation (1) one can

define

rþεr¼M aC þε aCð Þð Þ ð9Þ

Where Ɛ(aC) is the error in aC resulting from an error in r (Ɛr). The con-

dition number of M, κ(M) is defined as

ϵrk k
rk k ≤ κ Mð Þ ϵaCk k

aCk k ð10Þ

κ(M) acts as a factor that (if κ(M) >1) that provides an upper bound on

the magnification of the relative change in r ( ϵrk k
rk k ) into a relative change

in aC ( ϵaCk k
aCk k ).

Intuitively, very small changes in r should result in small changes

in aC. However, if κ(M) is large then small changes in r may propagate

into large changes in aC. In the case of FC, we have a single opportu-

nity to measure the r of a particular particle, we which we know is

contaminated with ƐM. If κ(M) is large, ƐM will highly magnified and

result in a large change in aC. Abundance estimations from matrices

with a smaller κ(M) will be less affected by ƐM, no matter what noise

model is used in the minimization process.

Presuming the columns of a matrix are linearly independent, the

condition number is highly influenced by the differences in the col-

umns of the matrix, that is, the more the columns of the matrix are dif-

ferent from each other, the lower the condition number. Figure 2

shows results from simulations which considers a series of FC mea-

surements of identical particles stained with two dyes. Since the parti-

cles themselves are identical the only difference between the

measurements is ƐM which was simulated as having a Gaussian distri-

bution. Figure 2A shows M with a condition number of 162 from a

two dye/two detector system where the dyes are very similar to each

other. Figure 2B shows the simulation calculations performed on a

representative particle using the matrix in Figure 2A. Figure 2B-Line

1 shows then when multiplying a particle with known abundance

[200, 100] by the matrix in Figure 2A, the observation r [190, 189] is

obtained. Figure 2B-Line 2 shows that when multiplying r [190,189]

by the inverse of the matrix in Figure 2A, the original abundance

[200, 100] is accurately recovered. Figure 2B-Line 3 shows that even

if a small amount of noise is added to r (compare the first term of line

2 and line 3), and then multiplied by the same inverse, a dramatically

different abundance is calculated. Figure 2C–E show different matri-

ces used for the simulations (see figure legend for rationale for matrix

selection). Figure 2F shows the normalized calculated abundance for

dye 1 from simulations using the matrices from Figure 2A, C–E. In all

cases, the mean recovered abundance, and the peak of the distribu-

tions, is at the true value of 200. However, except for the simulation

using the matrix 2E, there was a huge variation in the recovered abun-

dance values. This means that on any given sampling of our simulated

particle (and similarly obtaining our single measuring of the particle in

the FC), we are likely to calculate an abundance that is quite different

from the true one. Similar results were obtained when unmixing the

second dye, and results are summarized in Figure 2G.

Of interest to note is that the matrix in Figure 2C is simply the

matrix from Figure 2A with each detector split equally into two detec-

tors. The condition numbers of matrices in Figure 2A,C are identical,

as expected. However, Figure 2F shows that the SD of the calculated

abundances is lower using the matrix from Figure 2C compared to the

one from Figure 2A. This is because the matrix from Figure 2C effec-

tively provides replicated measurements (compared with 2A) which

can be used to average out the noise. The matrix in Figure 2D is very

slightly different from Figure 2C, however, even this slight difference

results in a significantly lower condition number (Figure 2G) and much

lower SD of aC. Unsurprisingly, the matrix from Figure 2E results in
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the lowest condition number and smallest SD of the recovered abun-

dances since the columns are dissimilar from each other and the con-

dition number is much lower than the other matrices.

3 | WILL UNMIXING ALWAYS IMPROVE
YOUR ABUNDANCE ESTIMATION?

While even adding a single extra detector will allow the calculation of

aC using Equation (8) and/or sophisticated matrix algebra techniques,

it does not necessarily guarantee significantly improved results

(i.e., where aC is closer to aT). The results will only improve if the extra

detectors provide an improved condition number and/or sufficient

replicate measurements to meaningfully average out the noise. This is

shown in Figure 2, where only if the detectors in Figure 2A were split

in such a way that the columns became different (compare Figure 2C,

D with 2E) do the results dramatically improve (Figure 2G). The main

advantage of a spectral system in this regard is the ability to exploit

the differences in the multiple endmember emission spectra (and

hence lower the condition number) without performing manual tuning

of the filters for each experimental panel.

We have already established that since εM is not accounted for in

Equation (2) or (8) in almost all cases aC ≠ aT. In the case of compen-

sation (since M is square) there is a unique solution for aC, i.e. if you

replace aT in Equation (1) with aC calculated from Equation (2), the

result that is calculated (rC) will match the actual observation r. When

M is rectangular, the system of equations becomes overdetermined,

in almost all situations if you take aC calculated from Equation (8) and

substitute it into aT in Equation (1) then rC ≠ r. This leads to the

seemingly strange situation where not only do we know that aC ≠ aT,

but we also cannot even use that value of aC to accurately derive the

value of r which we initially used to calculate aC. This is a fundamental

property of overdetermined systems of equations and is not as coun-

terintuitive as it may seem. Scientists are used to the fact that when

performing a linear regression, the regression line never goes through

every data point that was used to calculate the slope and intercept

(unless the data points are exactly on a straight line). The regression

cannot exactly recapitulate the observed data and is considered a

“best fit” to the data. When determining the slope and intercept of

this “best fit” line, one typically which minimizes the Euclidian dis-

tance between the calculated fit and the individual data points that

were used to generate the fit.

4 | ROLE OF PRESUMED NOISE MODEL IN
UNMIXING CALCULATIONS

If one presumes Gaussian noise, the solution for aC in Equation (8) is

actually an analytical solution to the “best fit” or maximum likelihood

estimation (MLE) of aT, that is, when substituting aT in

Equation (1) with aC, the calculated rC will be the closest to

r compared to all other values of aC. Hence Equation (8) is often

termed the Ordinary Least Squares (OLS) solution. In general, deter-

mining the MLE is an iterative process that conceptually proceeds as

follows:

1. Guess an initial value for aC

2. Calculate rC,

F IGURE 2 The effects of condition number on the estimation of
recovered abundances. Panel A—Hypothetical M from a 2 dye/2 detector
system. Columns are normalized to 1. Panel B algorithmic steps involved
in simulating a single sample with noise (details in text). Panel C, a mixing
matrix where the detectors from 2A are split equally in two. Panel D, a
mixing matrix with very slight differences from Panel C. Panel E—mixing
matrix with significantly different columns. Note, all matrices have the
same integrated emission in the top and bottom half compared to each
other. Panel F—the distribution of the calculated abundance of dye
1 from 4,000,000 simulations of each matrix (the number of trials
required to get the SEM of the results from matrix A to �1). Gray solid
line—Matrix 2A, black dotted line—Matrix 2C, black dashed line—Matrix
2D, black solid line—Matrix 2E. Panel 2G—A summary of the calculated
abundances for the two dyes using the different matrices. Note that the
means are all similar, but the SD varies dramatically based on the matrix.
For each simulation, the known abundance [200,100] was multiplied by
the respective mixing matrix to obtain a calculated observation. Noise
was added to each detector in the observation. The noise was drawn
from a Gaussian distribution with a mean of 0 and SD equal to half of
the smallest value of the calculated observation in order to generate
homoscedastic data. The data were then unmixed using Ordinary Least
Squares to obtain the calculated abundances for that trial.
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3. Calculate the distance between rc and r (call this distance d)

4. Make another guess of aC based on an approach designed to mini-

mize d

5. Calculate the new rC, and recalculate d

6. if the change in rC is below some threshold, return to step 4, other-

wise we have found the final aC

As can be appreciated from the algorithm above, the resulting aC

is highly dependent on how one calculates d (and to a lesser extent

the initial guess of aC). Equation (8) will result in aC that is the MLE

of aT under the assumption that d is L2 norm, or Euclidian distance,

which presumes that the mean of the noise is zero, and the SD of

the noise is the same in each detector. It is extremely convenient to

use Equation (8) since aC can be calculated quite rapidly without an

iterative process. In fact, since compensation is simply a special case

of unmixing (i.e., Equation (2) is a special case of Equation (8)), com-

pensation results can also be thought of as an MLE based on an

assumption of Gaussian noise. If εM does follow a Gaussian distribu-

tion then aC will be the best approximation we can derive for aT.

However, if εM does not follow a Gaussian distribution then not only

will aC ≠ aT (which will almost always be the case) aC will not even

be the MLE for aT since the presumed noise model is not even cor-

rect [18].

In reality εM is expected to follow a Poisson distribution due to

the fundamental stochastic process of photon emission [1, 18]. The

hallmark of the Poisson is that it is heteroskedastic; meaning that the

SD of the noise is related to the intensity of the signal. That is, detec-

tors with more signal will have more absolute noise than detectors

with less signal. Calculating aC using a model that assumes a Gaussian

noise when εM that follows a Poisson distribution will introduce a par-

ticular bias into aC. Detectors with large signal values will be overfit,

that is, have more weight in the fitting process, than they should. This

will cause the MLE fitting process to force rC to match r as closely as

possible for the detectors with large signals at the expense of letting

rC in detectors with dimmer signals deviate from the corresponding

values in r. This is because the distance minimization expects that the

amount of noise in the bright and dim detectors is identical, when in

fact they are not. Hence over a large population of cells, the low abun-

dance endmembers (which generate dim detector signals) have a

broader distribution than they should since the Gaussian MLE does

not put sufficient weight on signals from the dimmer detectors. In

contrast, an algorithm that minimizes a distance metric based on the

assumption of Poisson noise (i.e., the Kulback-Leibler divergence) will

place more emphasis on fitting dim detectors and decrease the SD of

low abundance endmembers (at the expense of a slightly increased

distribution of the bright endmembers). There are both analytical

(weighted least squares [WLS]) and iterative (iteratively reweighted

least squares [IRLS]) solvers that can calculate an MLE that attempts

to minimize a KL divergence [20]. The mismatch between the actual

noise model and the model assumed by the unmixing can further

exacerbate the spillover spreading that is often observed in flow cyto-

metry. This has been previously shown both theoretically and in prac-

tice [18].

5 | APPLICATIONS TAKING ADVANTAGE
OF THE OVERDETERMINED NATURE OF
UNMIXING

Another benefit of SFCs is that the unmixing algorithms can often

accurately unmix data from fluorophores with similar emission spectra

without custom tuning of the filters by the user [19, 20]. By

minimizing D, the equations naturally utilize key detectors which

results in separation of the various endmembers in a way that would

be difficult to predict a priori, particularly when using a Poisson based

unmixing model.

Another area where spectral cytometry can have a significant

impact is in the treatment of autofluorescence. Since conventional

compensation only utilizes the same number of detectors as fluoro-

chromes, there was no way to obtain additional information about the

autofluorescence of the cells. Conventional approaches are to simply

assume the autofluorescence is similar on all cells, or assume that the

autofluorescence is negligible and ignore it [2]. Due to the additional

detectors in a SFC it is possible to simply treat the autofluorescence

as another endmember in the system, and unmix it explicitly along

with the fluorochromes. Thus, the abundance of autofluorescence per

cell will be calculated along with the fluorochromes. In fact, different

autofluorescence species with different spectral signatures in individ-

ual or distinct cell types can easily be calculated, which is simply not

possible with conventional flow cytometry using a square mixing

matrix.

Another benefit of spectral cytometry, from a data analysis point

of view, is the ability to use many of the advanced mathematical tech-

niques that were developed for the analysis of overdetermined sys-

tems in other fields. For example, blind unmixing attempts have

evolved over the past 30 years [21–23] to determine the mixing

matrix as well as the per-event endmember abundances from the

experimental data, without the need for single stained controls. This

was recently applied to spectral cytometry data [24] and may be use-

ful in cases where there is insufficient sample to obtain ideal single

stained controls.

6 | CONCLUSION

FC utilizing conventional compensation has yielded a wealth of impor-

tant results that has impacted almost all facets of biology. However,

the application of spectral unmixing to FC data affords new possibili-

ties that are simply not possible utilizing traditional compensation. As

can be seen from many of the examples above, much of the advan-

tage of spectral cytometry stems from the overdetermined nature of

the problem. The fact that there is no unique solution allows the data

analysis to apply different mathematical models that will result in dif-

ferent solutions. As with all mathematical modeling, the relevance of

the obtained results will be dependent on how closely the model mir-

rors the actual underlying physical processes being studied. Spectral

flow cytometry allows one to both apply a wide variety of models to

the data and evaluate the goodness of fit using standard regression
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techniques. In addition, the conceptual shift from “correcting spillover

error” that has historically been prevalent with compensation, to one

of applying a variety mathematical models to overdetermined data

can result in a more sophisticated and beneficial treatments of

cytometric data.
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Abstract

Fluorescent proteins (FPs) have become an essential tool for biological research.

Since the isolation and description of GFP, hundreds of fluorescent proteins have

been discovered and created with various characteristics. The excitation of these

proteins ranges from ultra-violet (UV) up to near infra-RED (NIR). Using conventional

cytometry with each detector assigned to each fluorochrome, great care must be

taken when selecting the optimal bandpass filters to minimalize the spectral overlap.

In the last 8 years, several companies have released full spectrum flow cytometers

which eliminates the need to change optical filters for analyzing FPs. This addressed

at least part of the problem however, the laser wavelengths in commercial instru-

ments are generally not ideal for all fluorescent proteins yet do allow the separation

of at least six FPs. Another technical challenge is to have convenient single color con-

trols. If four different FPs are being used in an experiment, single color controls will

be needed to compensate or unmix the data. In the case of cultured cells this will

involve having each of the FPs expressed in cell lines separately with a parental cell

line expressing none. In the case of in vivo experiments, colonies of animals may need

to be maintained expressing each FP along with a wildtype animal. This represents a

considerable expense and inconvenience. An appealing alternative is to produce and

purify FPs and covalently couple to polystyrene microspheres. Such microspheres are

ready to use and can be stored at 4�C for months or even years without any deterio-

ration in fluorescence. The same procedure can be used to couple antibodies to these

particles. Here we describe this procedure which can be executed in any lab without

any special equipment or skills.

K E YWORD S

fluorescent proteins, full spectrum cytometry, microspheres, reference controls, spectral
unmixing

1 | INTRODUCTION

Since the discovery, isolation and cloning of GFP [1–3], hundreds of

fluorescent proteins have been discovered and created. A valuable

resource to explore all of these proteins is the FP database [4]. Fluo-

rescent proteins are widely used in flow cytometry and imaging

applications, from simple experiments where an FP is used to

demonstrate the successful transfection or transduction of cells to

more complex experiments where several FPs are used to demon-

strate cell cycle state [5, 6] or various gene activities. Fluorescent

proteins are available which can be excited from ultra-violet (UV) to

near infra-red (NIR) and range in their brightness. There are many

excellent reviews on the applications of fluorescent proteins in biol-

ogy [7–9]. The emission spectra of FPs are often quite broad which
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has made the use of multiple FPs concurrently quite challenging, as

is attaining single color controls for each FP. For instance, the “brain-
bow” mouse uses the confetti system which expresses green fluo-

rescent protein (GFP), yellow fluorescent protein (YFP), red

fluorescent protein (RFP) and cyan fluorescent protein (CFP) within

different cells. To analyze these cells by flow cytometry would

require each of the FPs expressed separately for compensation or

unmixing.

Flow cytometry is an essential tool for both biological research

and clinical diagnostic services and has been used in research setting

for about 50 years. Conventional cytometers have a number of optical

detectors which are usually photomultiplier tubes (PMTs) but several

instruments use avalanche photo diodes (APDs) and more recently Sil-

icon Photomultipliers. When using multiple fluorescent dyes in an

experiment, each dye will be intended for one detector. However,

very often the fluorescence of one dye will also spill into detectors

intended for other dyes. This can be corrected for by using color com-

pensation [10, 11]. Generally, the same number of detectors are used

as the number of different dyes used in the experiment with any

superfluous detectors not being used in data acquisition thus reducing

the size of the data file.

The first full spectrum cytometer became commercially available

in 2014 when Sony released the SP6800™ instrument. It used a single

32 channel PMT as the detector. Cytek Bio released their Aurora™ full

spectrum analyzer in 2017 which initially had three spatially separated

lasers and arrays of APDs as detectors. The initial laser configuration

was 405, 488, and 640 nm. Later a 561 nm laser and then a 355 nm

UV laser was added. Sony released a more advanced instrument in

2019 the ID7000™ and Becton Dickinson started offering a full spec-

trum option of their flagship high end analyzer the Symphony A5™.

Full spectrum cytometers, although they share many components

with conventional cytometers, are used a little differently. They will

have more detectors than fluorochromes and all the fluorescent

detectors will be used for every experiment and will produce a spec-

tral signature for each dye. The single-color controls are called refer-

ence controls and instead of traditional compensation, spectral

unmixing is used [11]. All the work described herein has been gener-

ated using a Cytek Aurora™.

Functionalized polystyrene microspheres are available commer-

cially from several sources. Carboxyl microspheres allow coupling to

the amine terminus of any protein [10, 12, 13] however, it is not

guaranteed that the function of the protein will not be compromised.

Microspheres are available in a variety of sizes but throughout this

study 4.5 μm microspheres were used.

2 | MATERIALS AND METHODS

2.1 | Producing and purifying fluorescent proteins

All fluorescent proteins except eGFP were expressed and purified by

Monash University Protein Production facility from plasmids pur-

chased from Addgene.org. The eGFP was a gift from David Miller and

Jacqui Gulbis Structural Biology division, Walter and Eliza Hall Insti-

tute for Medical Research.

2.2 | Expression

Using the provided cultures from Addgene, the plasmid DNA was

purified and transformed into LMG194 Escherichia coli strain with

ampicillin as a selection marker. A culture from a single colony was

grown in 50 ml of LB broth with ampicillin overnight at 37�C. Five mil-

liliter of this culture was inoculated into 500 ml of LB containing ampi-

cillin and grown until the OD reached 0.6. The protein expression was

induced by the addition of 0.2% Larabinose and grown overnight at

37�C with shaking at 180 rpm. The biomass was centrifuged then the

pellets were resuspended in lysis buffer and stored at �80�C until

ready to process. One liter of biomass was generated for this

purification.

2.3 | Purification

The cell paste was thawed and a protease inhibitor tablet and a small

amount of DNase I was added to each sample. This material was soni-

cated then centrifuged at 20,000 g for 15 min at 4�C. The material

was filtered and loaded onto a 1 ml nickel affinity column at 1 ml/min

and washed with 100 mM Na3PO4, pH 7.4, 150 mM NaCl, 20 mM

Imidazole, 10% glycerol. The bound protein was eluted from the col-

umn using a high imidazole elution step and the material was loaded

onto a S200 gel filtration 16/60 column 100 mM Na Phosphate,

pH 7.4, 150 mM NaCl, 10% glycerol. A series of fractions were ana-

lyzed on an SDS-PAGE gel. Those fractions that contained a protein

of the expected size were pooled. The concentration of the final frac-

tion was measured using a Biorad protein assay. The FPs produced

were Venus, eBFP2, Cerulean, dsRED homodimer, Td Tomato,

mCherry and mKate. For long term storage, purified FPs were frozen

at �20�C in 50% glycerol in PBS.

3 | COUPLING ANTIBODIES AND
FLUORESCENT PROTEINS TO
MICROSPHERES

Proteins may be covalently coupled to carboxyl functionalized micro-

particles by using water-soluble carbodiimide (EDAC) to activate the

carboxyl groups. These activated carboxyl groups will then be reac-

tive to the primary amine groups on the proteins being coupled. The

beads used throughout this study are 4.5 μm carboxylate micro-

spheres (Polysciences Inc PA USA) Cat #17140-5. The polylink pro-

tein coupling kit Cat # 24350-1 was used for all the coupling

reactions which contains: Coupling buffer, storage buffer and carbo-

diimide (EDAC).

The procedure for coupling fluorescent proteins to the beads is as

follows: Pipette 0.5 ml of the bead suspension into a 1.5 ml
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microcentrifuge tube. Centrifuge in a benchtop microcentrifuge at

2000 g for 5 min. Carefully aspirate the supernatant then resuspend

in 0.5 ml coupling buffer. Repeat the previous wash step. Resuspend

the beads in 0.17 ml of polylink coupling buffer. Prepare fresh 10 mg

EDAC in 50 μl polylink coupling buffer. Add 20 μl to the bead suspen-

sion. Incubate for 10 min at room temperature. After vortexing briefly,

add 250 μg fluorescent protein. Incubate at room temperature on a

rotary mixer for 4 h. Centrifuge in a benchtop microcentrifuge at

2000 g for 5 min. Aspirate supernatant and resuspend in 0.5 ml

Polylink storage and wash buffer. Centrifuge in a benchtop microce-

ntrifuge at 2000 g for 5 min. Repeat the previous wash step. Carefully

aspirate the supernatant then resuspend beads in 1 ml of polylink

storage buffer. Add 50 μl of the bead suspension to a 5 ml dropper

bottle, add 4 ml dPBS with 0.02% w/v Sodium azide. The bead prepa-

ration can be stored at 4�C for 12 months or more. One such reaction

can produce twenty 4 ml bottles each of which can yield about

100 tests. Blank beads can be prepared by diluting 25 μl stock beads

with 4 ml dPBS with 0.1% Bovine serum albumin and 0.02% w/v

Sodium azide.

The same procedure can be used to produce antibody capture

beads by coupling polyclonal Goat anti- Rat IgG or Goat anti Mouse

IgG (Thermo Scientific #31220 and #31160 respectively). In the case

of coupling antibodies 180 μl of antibody (about 360 μg of protein) is

added. The diluted antibody capture beads can be stored at 4�C for at

least 12 months.

3.1 | Flow cytometry

The FP coupled beads require no preparation but should be thor-

oughly resuspended before use. All samples were analyzed on a Cytek

Aurora™ full spectrum flow cytometer having either four lasers,

488, 561, 640 and 405 nm or five lasers, 488, 561, 640, 405 and

355 nm. One drop of each of the FP coupled beads was dispensed

into a 12 � 75 mm tube along with 200 μl PBS. One drop of the blank

beads was dispensed into a 12 � 75 mm tube along with 200 μl PBS.

For using the antibody capture beads, one drop of the bead sus-

pension was added to a 12 � 75 mm tube along with 1 μl of conju-

gated antibody. Samples were incubated in the dark for 10 min. For a

universal negative, samples were diluted with 200 μl PBS without

washing and used immediately. If the samples were going to have

blank beads added to the tube, the labeled beads were washed by

adding 1 ml of PBS and centrifuging at 500 g for 5 min. The superna-

tant was removed and the beads resuspended in 200 μl PBS.

For those not familiar with the Aurora platform, the different

detectors are labeled by laser (V for 405 nm, B for 488 nm, YG or Y

for the 561 nm and R for the 640 nm lasers). The detectors are num-

bered with the lowest number being the lowest wavelength detector.

For example, the V1 detector is the lowest wavelength detector off

the 405 nm laser with a bandpass filter allowing light from 420 to

435 nm to pass. Details of the wavelengths of the various detectors

can be found on the Cytek Bio website (https://cytekbio.com/pages/

user-guides).

At all times the gain setting of the fluorescence detectors were

the Cytek Assay Setting with only the gains for the FSC and SSC

altered to allow for the differences on size of the particles used.

Spectroflo™ v2.2.0.4 was used for data acquisition. All the FP

coupled beads were initially used as reference controls and the blank

beads were run as a universal negative. The raw data can be exported to

give a spectral signature, unmixed data can be used to evaluate the spill-

over spread of each FP into the other channels. Spillover spread was

evaluated using Flowjo™ software (BD Biosciences, Sa Jose, CA USA).

After unmixing, various combinations of the FP were added

together and run as separate samples. Initially all eight FP were run as

reference controls but the spillover spreading was unacceptable, so

the experiment was duplicated, tdTomato and mCherry were deleted

and unmixing was repeated.

4 | COMPARING CELL BOUND FP
FLUORESCENCE, BEAD BOUND FP
FLUORESCENCE AND FREE PROTEIN
FLUORESCENCE

On the Aurora, the median fluorescence intensity of each of the raw

channels can be exported out of Spectroflo for each of the FP coupled

samples as well as the blank beads. The data can be opened in Excel

or some other graphing software such that each column is a different

raw channel and each row is a different FP sample. The values from

the blank can be subtracted from each FP row to remove the spectral

characteristics of the blank beads. The median values can be normal-

ized such that highest value of the entire spectral signature is one.

The same procedure can be used for cells expressing FPs. The nega-

tive cell signature can be subtracted from the FP expressing cells and

the data normalized. This allows the FP expressing beads and cells to

be compared on the same scale. A metric referred to as the difference

index (DI) is used demonstrate the difference between two signatures.

It is calculated as follows: First each signature has the appropriate

negative subtracted to remove the influence of the autofluorescence

signatures of beads and cells. The signatures are then normalized such

that each signature has a maximum value of one. The difference

between each of the fluorescence channels is computed and those

values are added together. Thus, a value is derived that describes the

total difference between two signatures. A correction factor is added

to make the difference between two signatures with few similarities

equal to one, for this purpose CFP and mCherry were used. Two iden-

tical signatures will have a value of zero. The signatures of two

batches of mCherry beads coupled 3 years apart can be compared in

the same way.

To compare the fluorescent signature of the bead bound FPs and

free FP solution, samples were run on a Cary Eclipse fluorescence

spectrometer (Agilent Technologies Inc CA USA). One hundred micro-

liters of each of the FP samples was run on the spectrophotometer

with the excitation wavelengths chosen to match the lasers on the

Aurora instrument. The exported data can be normalized as above to

make the highest channel one.
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There are many more channels on the spectrophotometer so

some manipulation was needed to compare them on a similar scale.

The cells used to compare the bead/cell FP spectra were all HEK

293 T cells transfected with the appropriate FP construct except for the

tdTomato which was constitutively expressed in mouse splenocytes.

5 | RESULTS

5.1 | Producing and purifying fluorescent proteins

The FPs were produced by the Monash Protein Production Unit at

Monash University, Clayton, Victoria, Australia. Protein was success-

fully produced from all the plasmids except for iRFP670. This FP pre-

cipitated and wasn't usable. All other proteins were delivered at a

concentration of 1 mg/ml. The actual concentration of the proteins

may have been less than that for some of the proteins as some precip-

itation was observed. Several attempts were made to dissolve the

iRFP670 FP by varying the salt concentration of the buffer but to no

avail.

5.2 | Microsphere coupling

All the fluorescent proteins coupled well to the beads as seen in

Figure 1. Some of the microspheres are much brighter than others.

The eBFP, Cerulean and mKate are less bright than dsRED, mCherry,

tdTomato, eGFP and Venus. The differences can be explained by, the

brightness of the FP, the sub-optimal excitation of the FPs with the

Aurora laser configuration and the differing actual concentration of

the purified FPs, as noted above some precipitation was seen in some

of the proteins.

As the antibody capture beads are the same beads used for the

FPs, no changes to gains are required when running a mixture of fluo-

rescent proteins and antibody coupled reference controls. The same

negative can be used for all samples. Typical antibody capture bead

histograms are shown in Figure 2.

Carboxyl microsphere coupling is more straightforward than using

glutaraldehyde and amine reactive beads and in our hands, carboxyl

beads bind more protein (data not shown). Larger microspheres can

be used if higher amounts of fluorescence are required. We have

experimented with 6, 10 and 20 μm microspheres. The larger micro-

spheres bind more protein but settle more quickly and as there are

fewer particles per microgram of bead suspension are thus less eco-

nomical. The antibody capture beads compare well with commercially

available particles. The polyclonal capture antibodies used, bind both

light chains equally well but are species specific with little cross reac-

tivity with other species such as hamster.

5.3 | Spectra comparison of FP coupled beads, FP
expressing cells and free FP

The spectral signature of data generated by the Cytek Aurora and

free fluorescent proteins can be compared by looking at Figure 3.

The fluorescent signatures between the two platforms are similar

F IGURE 1 Each fluorescent protein coupled to the carboxyl microspheres. The uncoupled beads are shown in blue
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but not identical. The detector arrays on the Aurora do have gaps in

the wavelengths detected to avoid scattered light from the lasers.

This will distort the spectral signature somewhat and the gains gen-

erally used on the Cytek Aurora (Cytek assay setting) are optimized

to allow optimal unmixing of multiple antibody fluorochromes, this

will explain some of the differences between the Aurora generated

data and the spectrophotometer generated data. In particular, mKate

despite subtracting the signature of the uncoupled polystyrene parti-

cles, does have a small peak in the violet channels of the Aurora

which is absent when looking at the signature of the free FP on the

spectrophotometer. The signatures of FP coupled beads and FP

expressing cells were found to be very similar as seen in Figure 4.

The signatures of the uncoupled beads and FP negative cells are sub-

tracted from the FP coupled beads and FP expressing cells respec-

tively. It should be noted that the negative cell signature subtracted

from the FP expressing cells should be from identical cells with an

identical autofluorescence signature. This is not always possible

which explains some of the differences observed. The difference

between the beads and cell signatures is shown as the DI and is

shown on each plot. The old and the new mCherry coupled beads

have a very low DI of 0.02 as they are almost identical. The signa-

tures CFP and mCherry were chosen as signatures with few similari-

ties and the correction factor was chosen to give a DI value of one.

Figure 5 shows the results of using FP coupled beads as reference

controls. There are some unmixing errors which result in differences

in median values in the spillover channels between the unlabelled

and labeled particles. The median of both unlabeled and FP

expressing cells are shown by the red lines.

5.4 | Using multiple fluorescent proteins together

We demonstrate in Figure 6 that six FPs can be used together with

ease, with an acceptable level of spillover spread. If UV excited FPs or

far-red excited FPs were available it would be simple to add a few

more. The eGFP, Venus, dsRED and tdTomato beads are very bright.

If cells are less bright that the beads, the spreading would look less

severe. The FP coupled beads can be used in the planning stages of

an experiment to ascertain which FPs can be used together along with

which antibodies.

5.5 | Trouble shooting

Anecdotally fluorescent proteins are difficult both to purify and cou-

ple to beads. We found no such difficulties. Despite being expressed

in E. coli the spectral signatures were almost identical to those

expressed by mammalian cells. Even the dimeric proteins showed the

same spectral signatures as expected. Expressing and purifying pro-

teins in E. coli is both quicker and less expensive that expressing in

insect or mammalian cells. We did experience some slight precipita-

tion of several FPs upon delivery and after several years stored in the

F IGURE 2 Typical antibody coupling with goat-anti rat IgG coupled carboxyl microspheres. The uncoupled beads are shown in blue. All
antibodies are Rat anti mouse anti-CD4 (Clone GK1.5) (BD Biosciences, CA USA)
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fridge in pure dPBS. I would suggest freezing the proteins in 50% glyc-

erol. We have experienced very heterogenous coupling of FPs when

too little protein is added. Presumably, the protein is absorbed so

rapidly that some beads get little exposure to free FP. This results in a

histogram with a “smear” rather than a single homogenous peak. The

solution is to add more protein.

F IGURE 3 Spectral signature for eBFP2, cerulean, eGFP and mVenus from (A) the Aurora and (b) the Cary eclipse fluorescence spectrometer.
Spectral signature for dsRED, tdTomato, mCherry and mKate from (C) the Aurora and (D) the Cary eclipse fluorescence spectrometer

MONARD

Spectral Flow Cytometry: A Comprehensive Tool for Deep Profiling of Cell Populations 25

BACK TO CONTENTS



6 | DISCUSSION

Using antibody capture beads as single color controls has been stan-

dard practice in many labs for many years. Carboxylate beads offer

simple coupling to proteins, despite the bead binding the amine termi-

nus of immunoglobulin, the coupled antibodies capture fluorescent

antibodies well. Using cells for single color controls is preferable but is

not always practical, as for instance, the target cell population may be

so rare that accumulating a large enough data file is not possible. Fluo-

rescent protein coupled beads are a very convenient option to having

FP labeled cells, the particles are ready to use, stable and inexpensive

to make. While coupling FPs to beads is a relatively trivial process, the

F IGURE 4 Overlay of spectral signature of beads and cells for (A) tdTomato, (B) mCherry, (c) eGFP, (d) CFP, and (e) Venus, (f) CFP and

mCherry beads and (g) freshly coupled mCherry beads with mCherry beads coupled 3 years previously. The Difference index (DI) is on the top left
of all plots
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difficulty is producing the purified FPs. This may have to be out-

sourced by using a protein production facility. One milligram of puri-

fied FP is enough protein to produce about 10,000 tests. In this study

eight fluorescent proteins were successfully produced, purified and

coupled to carboxylate polystyrene microspheres. All of the FPs were

produced in E. coli but the fluorescent characteristics resulting from

these proteins appear to be very similar to FPs expressed in eukary-

otic cells.

When the FP coupled beads are used as reference controls often

some unmixing errors are observed as shown in Figure 5. These

unmixing errors may be the result of the coupling process or the FPs

coupled to the beads did not always match exactly the FPs expressed

the cells studies, for instance tdTomato was coupled to beads but the

cells used expressed dTomato and Cerulean was coupled to beads but

eCFP was expressed in the cells used. Producing the FPs in E. coli is

not thought to change the spectral characteristics the proteins There

are other methods of coupling proteins to beads which will be investi-

gated to see if the signatures of the FP coupled beads and cells can be

make perfect. The Cytek Aurora can detect very small changes to the

fluorescence signature, for instance dsRED and tdTomato have very

similar signatures but can be separated on the Aurora albeit with a

high level of spread.

Mostly monomeric FPs were chosen as it was thought the pro-

duction would be more straightforward and they were also the most

requested FPs at our institute. There is no reason why far-red and UV

excited FPs could not be produced in the same way and there are

plans to do this in the future. Antibody capture beads have been pro-

duced in the Flow Cytometry facility at WEHI for the last 8 years and

are sold to investigators for a small fee to cover production. One bot-

tle of 5 ml of 4.5 μm microspheres from the manufacturer can pro-

duce about 100 kits of positive and blank beads and each kit can yield

about 100 tests.

F IGURE 5 FP coupled beads are used as reference controls, the resulting unmixing shows some unmixing errors when looking at
combinations of FPs expressed in cells. The medians are shown as red lines for both unlabelled and FP expressing cells. Each dotplot is a
concatenated FCS file from FCS files of unlabelled cells and each of the FP expressing cells
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FP coupled beads and antibody capture beads can be used in the

planning stage of an experiment, reference controls from both fluores-

cent proteins and antibody fluorochromes can be acquired on the aurora,

unmixed then the spillover spreading matrix (SSM) can be used to check

the spreading. If there are unacceptable levels of spreading, a FP or anti-

body fluorochrome can be substituted and the samples re-unmixed.

F IGURE 6 Mixture of eGFP, Venus, eBFP2, cerulean, dsRED, and mKate coupled microspheres. Six of the FP coupled beads can be unmixed
and separate with an acceptable level of spread on a Cytek Aurora
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In this study we demonstrate that it is possible to couple fluores-

cent proteins to carboxyl polystyrene microspheres using a standard

protocol. We demonstrate that the spectral signatures of beads and

cells are very similar for several FPs. This suggests that the fluorescent

signature of the FPs are distorted little by coupling to polystyrene

beads making FP coupled beads a convenient surrogate for FP

expressing cells. It was found that some red fluorescent proteins,

dsRED and tdTomato have signatures so similar that they should not

be used together. Likewise, mCherry and mKate are close spectrally

resulting in a large spillover spread. We demonstrate that six fluores-

cent proteins can be used together without difficulty. The brightness

of some of the FP coupled beads makes the apparent spreading look

worse than it would if the beads were dimmer. With the addition of

some UV and far-red excited FPs it should be possible to separate

10 fluorescent proteins. Some unmixing errors were incurred when

using FP coupled beads as reference controls so some caution is

required when using them, but they represent a convenient alterna-

tive to FP expressing cells.
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