

Super-resolution Microscopy

Essential
Knowledge
Briefings

Second Edition, 2018

Cover image: microtubules labeled with Alexa-647. The full width of the image is approximately 2 μ m. Sample and raw images courtesy of S Niwa and N Hirokawa, University of Tokyo, Japan. The original images were taken with a ZEISS Elyra PS.1. The image portion in the inset shows the image quality as obtained from conventional microscopy methods.

© 2018 John Wiley & Sons Ltd, The Atrium, Southern Gate,
Chichester, West Sussex PO19 8SQ, UK

Microscopy EKB Series Editor: Dr Julian Heath

Spectroscopy & Separations EKB Series Editor: Arne Kusserow

CONTENTS

4 INTRODUCTION

6 HISTORY AND BACKGROUND

10 IN PRACTICE

31 PROBLEMS AND SOLUTIONS

36 WHAT'S NEXT?

About Essential Knowledge Briefings

Essential Knowledge Briefings, published by John Wiley & Sons, comprise a series of short guides to the latest techniques, applications and equipment used in analytical science. Revised and updated annually, EKBs are an essential resource for scientists working in both academia and industry looking to update their understanding of key developments within each specialty. Free to download in a range of electronic formats, the EKB range is available at www.essentialknowledgebriefings.com

INTRODUCTION

Super-resolution microscopy in optical microscopy encompasses techniques that allow acquisition of images with a resolution better than the limit imposed by the diffraction of light (typically 10–150nm). These techniques are mainly based on, but not restricted to, fluorescence microscopy.

Optical microscopes are the tools of choice when it comes to visualizing the structures and dynamic processes inside cells or within virtually any specimen. They have been essential in life sciences (particularly biology and biomedicine) from the characterization of tissues and micro-organisms to drug development, and the diagnosis and treatment of diseases. The aforementioned limited resolution of these methods – to around 240nm in the focal plane (xy) and around 600nm along the optical axis (z) – make individual details, such as subcellular structures (eg membranes, vesicles and organelles), appear blurred out, lacking finer detail. Compare this with, for example, electron microscopy where resolution of a few nanometers is commonplace, but substantial sample preparation is required (fixation, freezing, metal coating, *etc*) and extreme imaging conditions (high vacuum, bombardment by charged particles, *etc*).

Circumventing the resolution limit while keeping the minimally invasive nature of optical microscopy: this is what super-resolution microscopy offers. Observing and characterizing life in its finest structures, down to resolving molecular details. Cellular mechanisms become quantifiable, for example the reorganizing of actin and microtubulin filaments, or the firing at individual synapses in a live neuron.

Super-resolution techniques can uncover mechanistic details in biological processes and will therefore play a major role in life sciences.

At the time of writing, the scientific community is at a point where various super-resolution techniques have been available for several years. The methods have left the field of specialized research, in which every piece of equipment required high levels of maintenance, and have rapidly reached the mainstream of scientific research. It is thanks to companies like ZEISS and other manufacturers, that the scientific community now can routinely employ super-resolution techniques to answer their questions.

This Essential Knowledge Briefing provides a general overview of the field of super-resolution microscopy. It will explain in a simplified way how the various techniques work and give examples of how scientists have successfully employed these techniques in their research.

HISTORY AND BACKGROUND

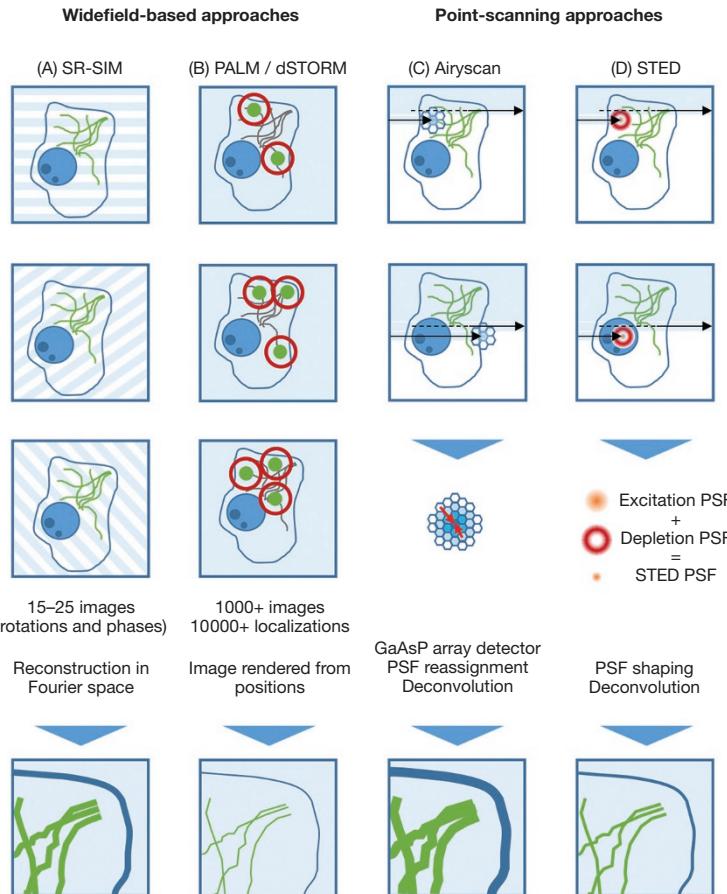
The driving force in the development of optical microscopy techniques lies in keeping its minimally invasive nature, while removing the limitations in optical resolution.

Advances in optical microscopy, historically, focused on improving contrast and resolution with illumination/detection schemes such as differential interference contrast (DIC), phase contrast, *etc.* A strong push forward came with fluorescence microscopy, digital imaging and the possibility of specific labeling (*eg* genetically, using fluorescent proteins such as green fluorescent protein [GFP] or using antibodies in immunolabeling). Fluorescence provides high experimental contrast – as only the structures that are of interest become visible.

The combination of fluorescence techniques with confocal laser scanning microscopy (LSM), in the mid-1980s, proved extremely fruitful for biological and biomedical research. It allowed scientists to characterize specimens with the benefit of fluorescence specificity at the diffraction limit, with an in-plane (lateral, *xy*) resolution of about 240nm and vertical (axial, *z*) resolution of around 600nm (see numerous reviews and tutorials on confocal microscopy).

Super-resolution techniques emerged as a logical extension in this process. For a more thorough historical context, see Cremer *et al*, 2013. (All references are listed in the Further Information section at the end of this EKB.) The four approaches in super-resolution microscopy presented here are the ones that emerged as robust and commercially viable, all of which are based on fluorescence microscopy:

Widefield-based approaches:


- Super-resolution through structured illumination (SR-SIM)
- Localization microscopy (direct stochastic optical reconstruction microscopy [dSTORM], photoactivated localization microscopy [PALM], point accumulation for imaging in nanoscale topography [PAINT], *etc*)

Point-scanning approaches:

- Confocal based Airyscan
- Stimulated emission depletion (STED)

Figure 1 gives a schematic overview. The techniques, their advantages, limitations and practical considerations, are given in the next section (In Practice).

There is no final statement asserting that one technique is superior to another. Performance and usability depend strongly on the question at hand and on the specimen that is studied. The most important points will be laid out in the following sections in order to allow for a more balanced comparison. Nevertheless, one will often find a comparison in terms of resolution, as shown in Figure 2. The point spread functions (PSF) of the individual techniques, which describe the apparent size of an infinitely small point of light, are placed side-by-side showing the middle section along the optical axis. The lateral (r) and axial (z) diameters of the ellipsoids correspond roughly to the best obtainable resolution. This is often interpreted as 'the smaller the better'. While the most significant resolution improvement is obtained with 3D-STED and localization microscopy, these techniques have some limitations in sample preparation. On the other hand, Airyscan and SR-SIM

Figure 1. Overview schematic of the super-resolution techniques. The image acquisition principle, processing details, and the final super-resolution image are arranged from top to bottom (object of interest highlighted green – note the difference in levels of detail). From left to right: (A) SR-SIM. Structured illumination sequences (orientations and phases) yield images with resolution down to 100nm (xy) and 250nm (z). (B) Localization microscopy (eg PALM, dSTORM) identifies and localizes individual molecules yielding a final image with typical resolution of 20nm (xy) and 60nm (z). (C) Airyscan combines raster scanning with an array detector. Reconstruction yields resolution down to 120nm (xy) and 350nm (z). (D) STED combines raster scanning with a combination of imaging and depletion beam. The opening of the central depletion beam determines the resolution of the final image (typically 60nm [xy] and 100nm [z])

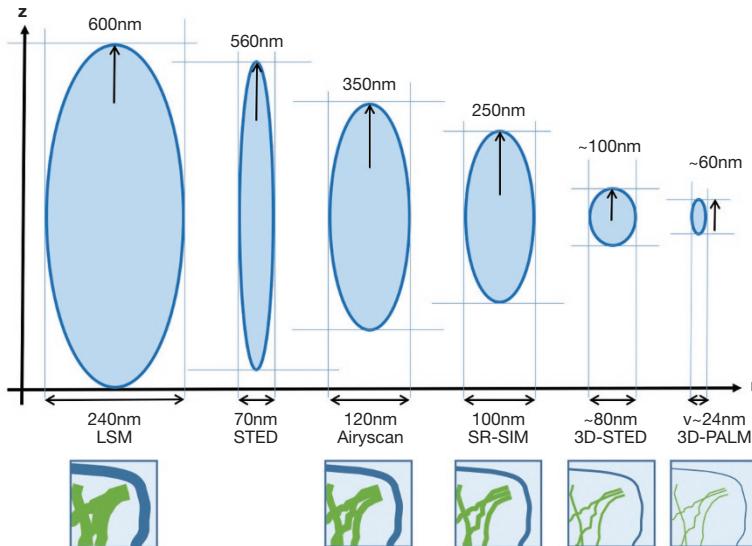


Figure 2. PSF of the various techniques represented by ellipsoids with a lateral (r) and axial (z) diameter equivalent to the most typically quoted resolution. Drawn to scale. The individual advantages and drawbacks of the techniques are not represented in this graph. Numbers were taken from Schermelleh *et al*, 2010 and may not represent individual manufacturer's specifications

are broadly employable and deliver high resolution – albeit not as high as the one obtainable with localization microscopy.

It is important to emphasize that the quality of the samples will affect the attainable resolution and that the values reached in practice, for example from a noise-limited biological sample, may be significantly (10–20%) larger than the numbers given in Figure 2. The resolution of a technique or of an instrument is often characterized using very clean and bright technical samples (patterns, beads, *etc*). As a recommendation for choosing the technique that would be most suitable for a given study or specimen, the researcher should consider many aspects besides the resolution – such as sample preparation and temporal resolution.

IN PRACTICE

Super-resolution with structured illumination microscopy

SR-SIM combines fluorescence, widefield-based structured illumination and digital image reconstruction. The illumination is structured using a sequence of known grating patterns, leading to the reconstruction of the image with up to two-fold improved resolution (or 120nm in xy and 300nm in z). SR-SIM emerged in the 1990s, developed by, amongst others, Mats Gustafsson, at the University of California San Francisco, USA.

The raw images in structured illumination (Figure 3, top row) show the grid patterns (constant and consistent over the entire image) that are ideally adapted to the optics of the microscope (numerical aperture, laser wavelength, *etc*). Acquisition and reconstruction (left panels of Figure 3, middle and bottom rows) are automated on modern super-resolution microscopes (matching of grating to optics, adaptive reconstruction filters, *etc*).

SR-SIM uses the information contained in the known illumination structure (*ie* its frequency and angle). The resulting patterned images are a product of the grating with the structure of interest (*eg* the tubulin mesh in a cell). When grids of fine lines overlap at an angle, they create distinct patterns of coarser lines running across the image (or moiré, *eg* as seen in daily life through folded curtains). The combined image with the coarse pattern can be separated into individual components (in the frequency domain) and the known illumination pattern can be accounted for. Small objects (high frequencies) contribute to the coarse patterns (*ie* they have been down-transformed),

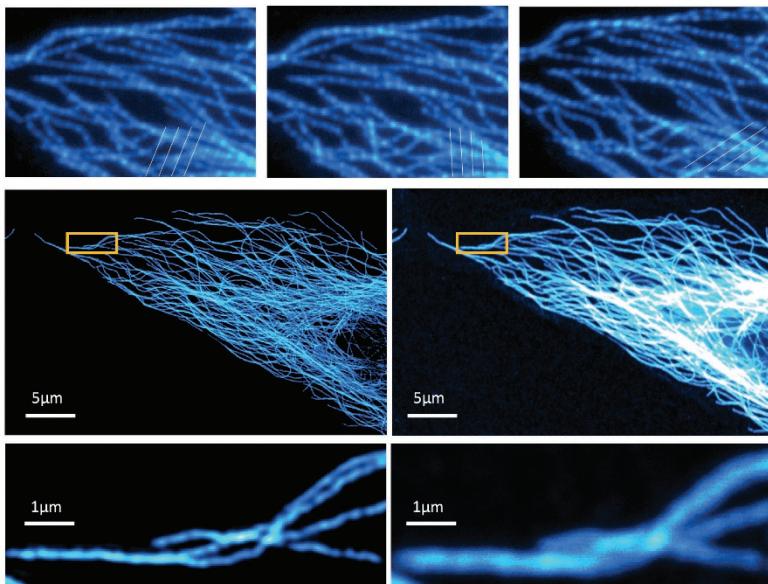


Figure 3. SR-SIM acquisition process on Alexa-561 labeled tubulin structures. Top row: shows a subset of raw images with differently shifted and oriented grating patterns. Middle row: shows the reconstructed super-resolution image on the left and, as a comparison, the same area imaged with confocal microscopy. Bottom row: shows zoomed-in views of the indicated orange squares

while large objects (low frequencies) remain unaffected. Once separated and cleaned from the grating, the frequencies can then be transferred back to their original positions, and this is then regenerated as the proper image of the small object. The net result is an image with resolution improved by up to a factor of two.

The grating separation is at the heart of SR-SIM: accurate separation leads to high-quality images. The resolution also depends on the angle (orientation) and phase (position) of the grating: this is why the grating appears to be swept across the image at different angles and phases. A typical single image in SR-SIM is reconstructed from between 15 and 25 individual images (three or five angles with five phases each).

Main advantages and limitations of SR-SIM

Versatility and live-cell imaging: SR-SIM is compatible with live-cell imaging conditions and is not restricted to specific wavelengths or laser powers.

Acquisition speed: SR-SIM can acquire images from a large area (eg 80 x 80 μ m) at 1 to 10 frames per second. Simultaneous acquisition of multiple colors is possible when using multiple cameras and appropriate beamsplitters.

Resolution in 3D and depth: the resolution improvement (ie 100nm in xy/300nm in z) is typically obtained from images taken up to a distance of 20 μ m from the coverslip surface.

Data analysis: data analysis, like co-localization or distance measurements, is straightforward. Noise is visible as texture and can be affected by reconstruction filter settings. Texture can be greatly minimized by increasing the number of grating angles (eg from three to five).

SR-SIM needs reconstruction algorithms. Reconstruction artefacts (textures) can appear as intensity fluctuations and depend on the quality of the initial 'raw' data. Poor image quality can have various origins: from instrument alignment issues to poor sample preparation. A number of SR-SIM data verification protocols and software packages (eg SIMCheck, for ImageJ) can be used to help or guide the user.

Localization microscopy (PALM/dSTORM)

Localization microscopy, such as PALM and dSTORM (more details in Blom *et al*, 2017), relies on the microscope's ability to determine the position of individual fluorescent molecules located along a structure of interest, rather than resolving them

optically. The positions can be determined with a precision of the order of 10nm. If thousands of such positions are gathered and superimposed, then it is possible to generate an image of a structure with improved resolution. The resolution depends on the size and density of molecules and the obtainable signal-to-noise ratio. It is therefore theoretically unlimited. Typical images, however, provide 10-fold improved resolution in comparison to conventional microscopy (20nm in xy and 60nm in z).

In localization microscopy, the challenge lies in detecting molecules on a one-by-one basis in order to resolve the structure of interest (*eg* a tubulin fiber). In most cases, this is achieved on the time axis, distinguishing between individual molecules via their on/off behavior (roughly: from a dark state to an emissive state – see the very simplified Jablonski–Perrin diagram, Figure 4, top row). In a sequence of images, the individual molecules are visible as diffraction-limited patterns that appear and disappear (on/off) as the sequence progresses (see Figure 4, top row, right). The sequences of (typically 10 000 and more) frames are acquired using, for example, widefield illumination or total internal reflection approaches (TIRF) as well as sensitive, fast, camera detection. Analysis of the sequence gives the individual molecule's positions, which are plotted in the final image with improved resolution. Figure 4, bottom row, left, shows a reconstructed image in which the individual positions of each spot (or molecule) are superimposed.

The two most common approaches that allow observation of individual molecules via their on/off behavior are PALM and dSTORM – the difference lies in the switching

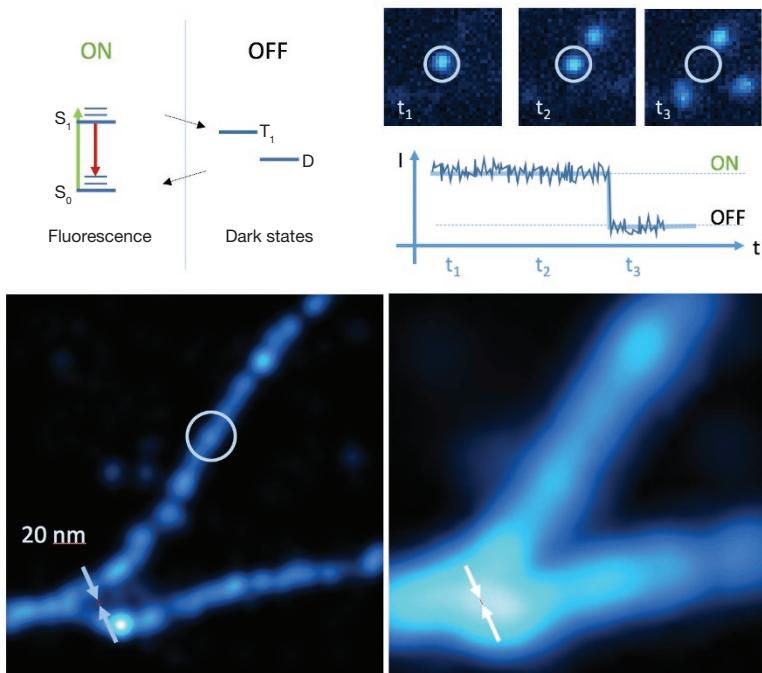


Figure 4. Localization microscopy. The upper row illustrates the typical on/off behavior of single molecules as seen in a time-series (left, a simplified Jablonski-Perrin fluorescence diagram). Individually, molecules are visible as diffraction-limited patterns that switch on and off in time (the last off step is usually irreversible). The graph shows a typical intensity transient for a single molecule. The two images below show segments of microtubules, as reconstructed from the individual molecule positions (left) with around 20nm resolution and the corresponding widefield image (right) for comparison (sample using standard Alexa 561 immunolabeling and embedding)

mechanism. PALM, developed by Eric Betzig and colleagues at Howard Hughes Medical Institute in Virginia, uses photo-activation to switch the molecules. In a sequence of images, the activation can be set so that only a few molecules appear in each frame of the sequence. They can therefore be easily identified and distinguished from one another in the final sequence. dSTORM relies on the physico-chemical interaction of fluorescent dye molecules with their immediate surroundings,

which cause the molecules to switch on and off (hence the term ‘stochastic’). Under proper conditions (pH value, redox states, *etc*) only a few molecules are on during the acquisition of each frame and therefore easily distinguishable from one another in the sequence. For completeness, we would also like to mention a third approach: PAINT. It does not rely on a direct on/off switching of the dye molecules, but rather their appearance and disappearance from the images due to binding and unbinding. When the dyes bind they remain immobilized and are visible as spots that can be localized; when they unbind they diffuse rapidly and therefore remain undetected).

For the final reconstruction step – *ie* the recognition of individual molecules and mapping them out on a final image – it is of little relevance whether they were photoactivated (PALM), if they were blinking passively (dSTORM), or if they were only appearing and disappearing from the images through some other process (PAINT). There is some difference, however, between the two switching approaches from the experimental side.

In dSTORM, label molecules emit at random times due to chemical reactions or interactions in their immediate vicinity (*eg* *cis-trans*-isomerism, complexation with reactive oxygen species, *etc*). There is little exterior influence or control over the experiment except for adding chemical reagents that will have to reach the immediate vicinity of the dye molecule (this is also not trivial if one considers compartmentalization or hydrophobicity, for example). On the positive side, the organic dye molecules are usually very bright and are more adaptable to the experimental circumstances (*eg* using far-red

dyes, such as Cy5, that emit outside of the autofluorescence spectrum).

PALM employs photoactivatable dyes (predominantly switchable fluorescent proteins, such as photoswitchable GFP, tdEOS, *etc*). The switching of the individual molecules is still random, but the rate with which the molecules switch on or off can be controlled by increasing or decreasing the intensity of the switching laser (*eg* 405nm). Fluorescent proteins are around 5nm in size and are genetically encoded into the structure of interest (they can be used *in vivo*, have a higher specificity and do not require fixation and permeabilization of the specimen). On the negative side, fluorescent proteins can exhibit maturation issues; they can disturb the expression levels of the protein of interest and are comparatively dim.

An important question in localization microscopy is: 'how many molecules are needed to get a good image?' The answer: it depends on the size of the structure itself. Roughly, one would need (at least) one fluorescent molecule in every 20nm. This is comparable to the size of a large protein. Thus, obtaining the required labeling density is not a trivial task. In the same vein, the labeling molecules themselves (including functional groups or primary and secondary antibodies) are in a size regime comparable to that of the positioning accuracy. So, while the positioning accuracy for a single fluorophore can be smaller than 20nm, this is of little use if the structure was labeled only with a few molecules, and if the labeling molecules themselves (*eg* primary and secondary antibodies) were too large.

Advantages and limitations of PALM/dSTORM

Versatility and live-cell imaging: dSTORM is generally not considered to be an adequate technique for live-cell imaging because the samples are usually prepared using immunolabeling (fixed cells). Localization microscopy, however, has been used to image living specimens with meaningful data from the perspective of molecule or particle tracking (Muriel *et al*, 2011; Nan *et al*, 2013).

Acquisition speed: PALM and dSTORM are considered slow because collection of a typical image sequence (>1000 frames) takes upward of 10 seconds, typically minutes.

Resolution in 3D and depth: in practice, PALM/dSTORM deliver the highest resolution of all presented super-resolution methods (theoretically unlimited – typically 20nm in xy/ 60nm in z) and can deliver molecular detail. Best results are obtained from transparent and well-prepared specimens near (around 10µm) the coverslip surface.

Data analysis: classic data analysis (distance measurements and 3D reconstruction) is possible. The capability to detect individual molecules, however, opens a wealth of data analysis possibilities that are not easily accessible via other methods (cluster analysis, intermolecular distances, *etc*). PALM/dSTORM images are rendered from a table of localized molecules (accurate channel alignment and drift compensation needs to be in place). Quantitation requires careful calibration and controls.

The biggest challenge for PALM/dSTORM is the need for photoswitchable molecules or addition of chemistry to bring the labels into an adequate ‘blinking’ regime. Also, PALM and

dSTORM have limited *in vivo* applications. Long-term stability is a crucial concern for PALM/dSTORM equipment.

Airy scan

Airy scanning is a super-resolution approach related to confocal LSM. To briefly recap, before moving on to Airy scanning, conventional LSM raster-scans a focused excitation beam over the specimen. Fluorescence originating at that focal spot is then separated from off-focus fluorescence with a pinhole. This rejection and the accompanying increase in resolution depends on the pinhole size. A small pinhole increases the rejection, and therefore, increases the resolution (like the tip of a sharp pencil in comparison to a larger, blunt tip). When the pinhole size matches the illumination spot diameter (1 Airy unit, AU) most signal is collected at optimal rejection of the off-focus light. The resolution of conventional LSMs is given for a 1AU opening of the pinhole, about 240nm in xy, and around 600nm in z.

The pinhole opening can be made arbitrarily small, *eg* to a fifth of the illumination spot diameter (0.2AU). It turns out that the accompanying resolution improvement will be limited (depending on the wavelength and optics used) to a factor 1.4 enhancement (to around 180nm) in comparison to the classical diffraction limit. More important, however, is the strong rejection of signal. At 0.2AU the rejection is 20-fold (95%), and this proves prohibitively impractical for biological samples (and even more so for live specimens).

The key element in Airy scanning is the detector design, which acts as an array of closed pinholes, each providing the aforementioned resolution increase, but collectively not

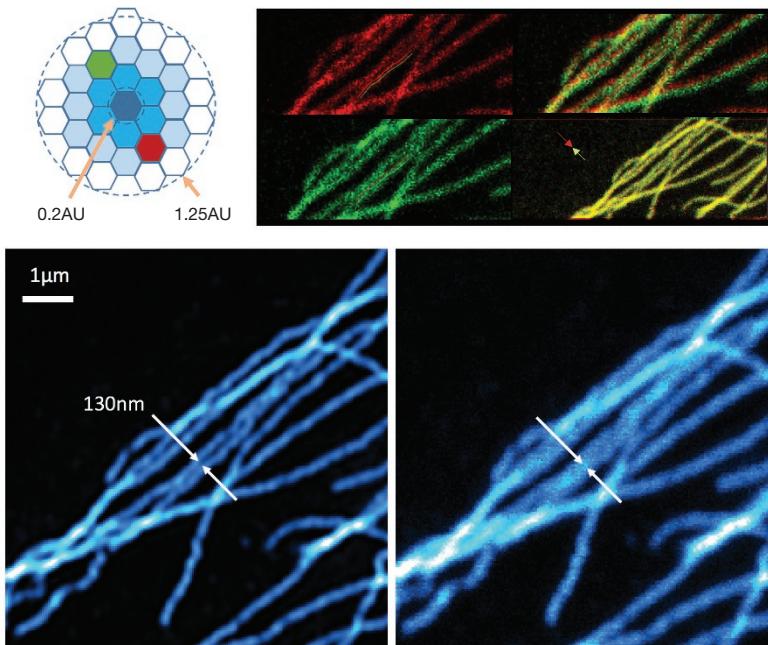


Figure 5. The top row shows the Airyscan detector array. It consists of individual detectors that correspond to a pinhole closed to 0.2AU. The individual images are offset and need to be rearranged (right panel, top row, shows the images from two individual detectors of the array). The final result is shown in the bottom row images. Left: the reconstructed Airyscan image. Right: confocal image for comparison. Microtubules labeled with Alexa 561 (as in the previous figures)

suffering from a high rejection of signal. This is because the detectors are adjacent to each other: the light rejected by one detector subunit is collected by its neighbors. This simple and elegant idea was formulated early in the development of LSMs (Cox *et al*, 1982), and revisited experimentally more recently (De Luca *et al*, 2013). A fast enough, sensitive and low-noise detector array became commercially available in 2014.

Airyscan addresses the challenge of imaging biologically relevant samples (low expression levels and keeping low laser

dosage) without signal rejection at closed pinhole. It is a new detection standard for LSM imaging, allowing entry into the realm of super-resolution. It is compatible with any form of LSM, including two-photon microscopy, adding tremendously to the versatility and applicability of the approach.

The data collected with an Airyscan detector array requires pixel reassignment (deconvolution, a computational approach broadly employed in LSM), which is a simple computational step. In total, the resolution improvement can reach 120nm laterally (xy) and 350nm axially (z).

Advantages and limitations of Airyscan

Versatility and live-cell imaging: of all presented super-resolution techniques, it is the most robust under live-cell imaging conditions. Airyscan is not restricted to specific wavelengths, laser powers or special objective lenses.

Acquisition speed: depends on the scanned area. Small areas (eg 10 x 10 μ m) allow speeds upward of 30 frames per second, large areas (eg 60 x 60 μ m) require a few seconds per image.

Resolution in 3D and depth: the 3D resolution improvement is approximately two-fold in comparison to LSM (eg 120nm in xy/350nm in z). Best quality images are readily obtained from transparent and well-prepared specimens. However, Airyscan can also be used in conjunction with large working-distance objectives and two-photon excitation conditions, and can be used to reach deep (millimeters) into tissue preparations.

Data analysis: the reconstruction of the images is straightforward and fast on modern computers. Airyscan, just like confocal LSM, allows for quantitative data analysis (eg imaging

and quantifying calcium bursts, photorecovery in diffusion, co-localization).

Of all presented super-resolution methods, Airyscan provides a resolution improvement comparable to that of SR-SIM. As with all raster scanning methods, the acquisition speed depends on the scanned area and the required pixel size (assuming a fixed dwell time per pixel). However, since it is an LSM-based approach it is very flexible (*eg* zoomed-in scanning, photomanipulation, combination with two-photon imaging) and less sensitive towards changes in refractive index and inhomogeneity in the specimen.

Stimulated emission depletion microscopy

STED microscopy is related to confocal LSM in the sense that it, too, is a point-scanning method. However, instead of using a pinhole to reject off-focus light (see the previous section on Airyscan), it suppresses off-focus emission (via stimulated emission) right at the illumination spot on the sample. To accomplish that, a second, high-intensity donut-shaped depletion beam is superposed with the focused imaging beam. The size of the ‘opening’ of the depletion donut therefore determines the obtainable resolution – the smaller this opening, the higher the resolution (as, in analogy, the sharper the pencil, the smaller the tip). This elegant approach was pioneered in the mid-1990s by Stefan W Hell’s group, now at the Max Planck Institute for Biophysical Chemistry in Göttingen, Germany (see Eggeling *et al*, 2015). A particularly interesting aspect of STED is that the donut ‘opening’ could, in principle, be made arbitrarily small. Therefore, the resolution is, in principle, not

limited (see Figure 6 for schematic illustration). The depletion beam can be shaped in 3D in order to also enhance resolution along the z-axis. In practice, the typical resolution given is of the order of 50nm in xy and 80nm in z.

The image formation is analogous to the image formation in confocal LSM, *ie* via raster scanning the beam across the specimen and detecting (and mapping) the fluorescence intensity in the final image. The key element (and the key difference) in STED (in comparison to confocal LSM) is the presence of the second beam for depletion via stimulated emission: the aforementioned donut-shaped beam, which is centered with the first (say, conventional) imaging beam.

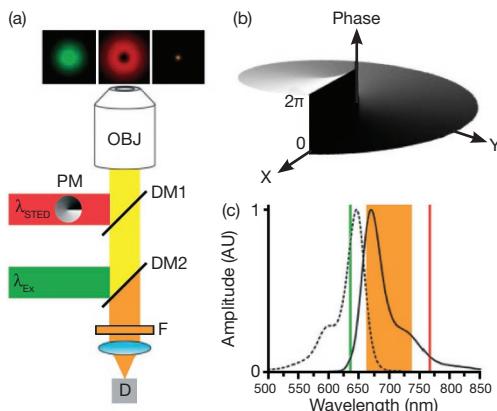


Figure 6. Simplified schematics of a STED microscope (left panel). The excitation and STED beams are superimposed by dichroic mirrors (DM1, DM2) and focused in the sample. A helical phase mask (PM) in the STED beam path creates a donut-shaped STED focus in the sample (red pattern, PM schematics in top right). Fluorescence is collected by the objective and focused onto a detector (D). Images are generated via raster scanning. Right, bottom, shows a hypothetical excitation (dotted line) and emission spectrum of a fluorophore. Figure from: Kubitscheck U (Ed), *Fluorescence microscopy: from principles to biological applications, first edition*, 2013. Copyright Wiley-VCH Verlag GmbH & Co. Reproduced with permission

From the perspective of experimental usability, the challenges associated with STED are threefold: first, maintaining a stable and precise shape of the donut, perfectly centered with the imaging beam; second, conceiving the experiment so the dyes and labels used are within the spectral and photo-physical confines of the depletion beam (not all dyes can be depleted efficiently); and third, adapting the depletion beam intensity to minimize the dosage on the specimen.

To stay within the confines of the available spectral windows, it is necessary to use 'depletable' dyes. Not all dye molecules perform in the best possible manner for STED studies, but the list is increasing at a fast pace. Coping with a very high intensity laser (increased bleaching, increased toxicity, heating, photodamage) brings further constraints into the experimental planning, but the newest technology in STED (*eg* rescue STED) is minimizing that problem. Commercially, STED is available, for example, as a stand-alone system or as an add-on setup for various microscopy stands (*eg* through Abberior Instruments, Göttingen, Germany).

Advantages and limitations of STED

Versatility and live-cell imaging: STED is generally not considered the most adequate technique due to the high power required for the depletion beam. Live-cell measurements have been demonstrated, however.

Acquisition speed and FOV: as a point-scanning-based method, the frame rate of STED depends on the FOV used, and the resolution under which it is operated. For small zoomed-in regions (10 μ m x 10 μ m, for example) speeds in

excess of 50 frames per second can be acquired. Larger FOVs require a few seconds. Simultaneous acquisition of multiple colors is possible.

Resolution in 3D and depth: the typical resolution is 50nm in xy and 80nm in z, but is theoretically unlimited. Additional image analysis (and deconvolution) allow for further resolution improvement. The depletion beam can also be shaped along the z-axis, giving resolution in z of about 80nm (at a slight expense of lateral resolution). STED becomes challenging when going into thick, over-labeled, noise-rich, scattering specimens.

Data analysis: all data analysis, such as co-localization, size and distance measurements are possible with STED images. Also, highly quantitative fluorescence correlation techniques (FCS) have been demonstrated using STED-based setups (Eggeling *et al*, 2015).

The most frequently found point of criticism of STED is its requirement for high-power laser and the concomitant phototoxicity and increased photobleaching rate. Most efforts that are put into STED and STED-related technology are aimed at keeping the depletion laser stable and as low as possible.

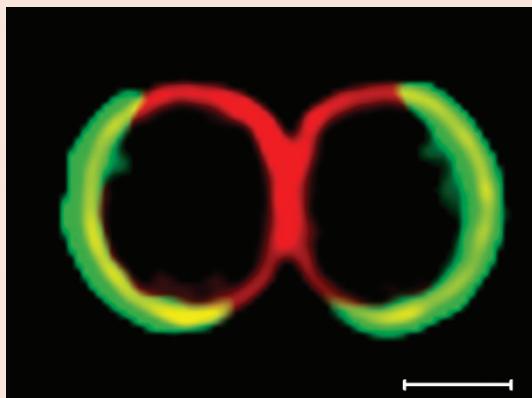
Considerations on sample preparation for all methods

Super-resolution microscopy requires thorough sample preparation. Image quality is rapidly affected by impurities (dust grains, bubbles, unspecific staining, *etc*) on the specimen being studied – for sample preparation see, for example, Allen *et al*, 2013. In essence, the message is simple: care must be taken

that all parts of the system, from the coverglass to the mounting or embedding medium, are clean and well defined (*eg* uniform thickness, clean mounting, labeling specificity).

Dyes and labels play an important role in fluorescence microscopy. Fluorescent proteins (*eg* GFP, mCherry, tdEOS) and organic dyes (rhodamines, cyanines) are available in various different colors and functionalities (*eg* antibodies, succinimide esters) allowing scientists to visualize cellular processes or interactions between organelles by labeling two or three groups of proteins (or DNA, lipids, *etc*) with different color labels. The labeling approach depends strongly on the specific topic that is being studied. Also, not all super-resolution techniques can be used in conjunction with all available dyes. Below, we present a few remarks on the topic of labeling, specific to each technique presented in this guide.

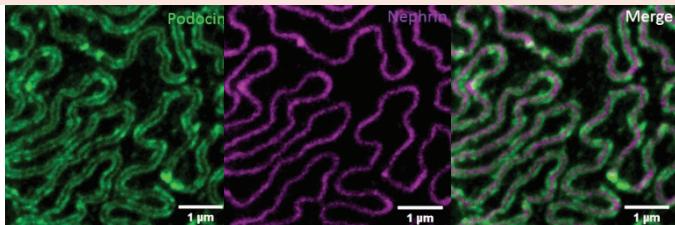
Airyscan and SR-SIM can work with the same fluorescent labels as conventional fluorescence microscopy. These techniques impose the least restriction when it comes to choice of fluorescent labeling.


STED requires a careful combination of fluorescent dyes considering the used depletion laser wavelengths. The list of dyes that have been used and tested in STED is rapidly growing, but it is, in comparison, still much smaller than the list used for Airyscan and SR-SIM. Labels for STED are exposed to high-intensity light and therefore need to be stable and robust enough to withstand repeated excitation.

PALM/dSTORM require labels that can be chemically or optically switched so that they only fluoresce for a short time – not all dyes do that and not all recipes are guaranteed

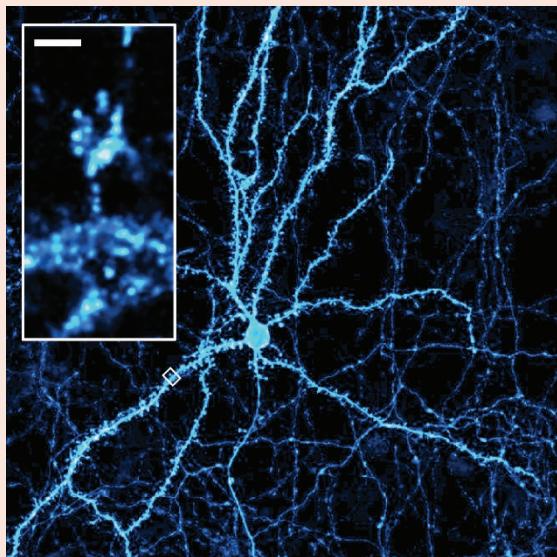
to work (for example, if the dye molecule is not accessible to the chemical reagents due to compartmentalization or solubility issues). The list of dyes (and preparation protocols) for PALM and dSTORM is rapidly growing.

CASE STUDY 1. SR-SIM


SR-SIM was recently employed by Professor Mariana Pinho's research group at the Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica, Portugal, to reappraise the questions surrounding bacterial cell-division. In their publication (Monteiro et al, 2015) they state that it was the small size of bacterial cells that called for studies employing super-resolution methods. With super-resolution they were able to draw a clear picture of asymmetry generated at the cell division of *S. aureus* bacteria.

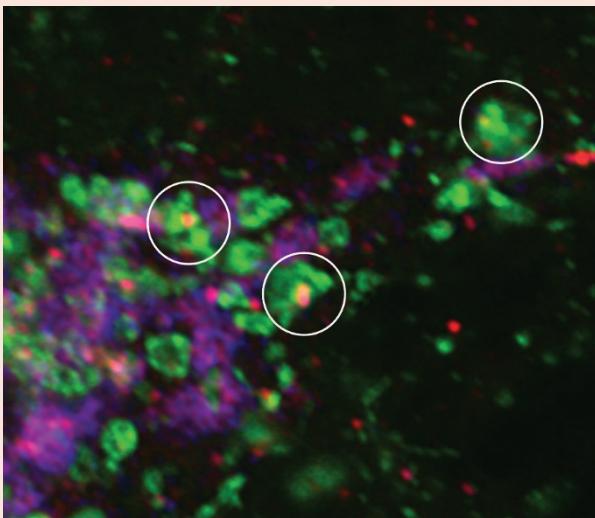
S. aureus COL cells were labeled for five minutes with WGA-488 (peripheral cell wall dye, green), washed and stained with Nile Red (membrane dye, red). Cells were then placed on an agarose pad, allowed to grow at room temperature and imaged by SR-SIM. Upon division, the old cell wall preserved the green WGA-488 signal while the new surface is labeled only in red. Scale bar 500nm. Images taken with a ZEISS Elyra PS.1 microscope using a Plan-Apochromat 63x/1.4 Oil DIC M27 objective. Images were acquired using five grid rotations

CASE STUDY 2. STED


STED, with its high-resolution capabilities and optical sectioning, is well suited to image at the nanoscale in tissue or organisms. In their publication, researchers Unnersjö-Jess and colleagues (from KTH and the Karolinska Institutet, Sweden) show that STED imaging is well suited to resolve the filtration slit in cleared kidney tissue (Unnersjö-Jess et al, 2016). The glomerular filtration barrier, consisting of podocyte foot processes with bridging slit diaphragm, glomerular basement membrane and endothelium, is a key component for renal function and tools that allow for their 3D structural characterization in health and disease are highly desirable. It was the combination of clearing techniques and deconvolution applied to STED imaging that provided the required resolution and signal quality.

Top-view of the filtration slit in podocyte foot-processes from a cleared kidney biopsy where the two slit proteins podocin (green) and nephrin (magenta) were immunolabeled with antibodies carrying Alexa594 and AbberiorSTAR635 and super-resolved with a 775nm STED laser

CASE STUDY 3. PALM


The dimensions of neuronal synapses, of the order of 100nm, suggest that optical super-resolution imaging methods are necessary for thorough investigation of protein distributions. In their publication (Liebmann et al, 2013) scientists from the Karolinska Institutet in Sweden applied localization microscopy techniques (PALM) to resolve synaptic protein topology and quantify single molecules of the neuronal sodium pump. Results revealed a compartmentalized distribution of sodium pumps in dendritic spines, with several nanoclusters of pumps typically found in the spine head and fewer in the spine neck.

Overview of a cultured hippocampal neuron genetically expressing the neuronal sodium pump (a3 isoform) labeled with the fluorescent protein PA-eGFP. The inset shows a PALM-generated pointillistic single molecule image of the sodium-pump topology in a dendritic spine (blue square). The image was acquired on a ZEISS Elyra PS.1 with 488nm excitation and 405nm photoactivation. Scale bar 300nm

CASE STUDY 4. Airyscan

Most neuronal function is regulated via membrane trafficking, in which the transmembrane proteins Nsg1 and Nsg2 play a critical role. Nsg1 has previously been identified as helping regulate endosomal recycling and sorting. However, in contrast to previous conclusions, Dr Bettina Winckler's lab in the Department of Cell Biology at the University of Virginia, USA, has demonstrated with Airyscan technology that Nsg1 and Nsg2 proteins are not resident endosomal proteins but traffic rapidly between the cell surface and lysosomes (Yap et al, 2017).

Cells were fixed in 2% paraformaldehyde/3% sucrose/phosphate-buffered saline (PBS) in 50% conditioned medium at room temperature for 30 minutes, quenched in 10mM glycine/PBS for 10 minutes. The fixation conditions used do not introduce holes into the overwhelming majority of cells. Coverslips were then blocked in 5% horse serum/1% bovine serum albumin (BSA)/PBS \pm 0.2% TritonX-100 or 0.1% saponin for 20 minutes. Antibodies were diluted in 1% BSA/PBS and incubated for one hour. The circles show endosomal structures that were picked up for analysis. Blue channel was Nsg1, Red Nsg2 and Green LAMP1 (lysosomal-associated membrane)

PROBLEMS AND SOLUTIONS

With the availability of super-resolution microscopes, and their capability of achieving resolutions in the range 10–150nm, it is not surprising that the scientific community has rapidly incorporated the techniques into their research. Super-resolution techniques are now in widespread use. Despite this success, however, and as mentioned above, all techniques have certain constraints. In this chapter, we present these constraints again as a side-by-side comparison, and point (when possible) towards strategies to overcome or minimize certain limitations.

Versatility/live-cell imaging

AiryScan: is perfectly compatible with live-cell imaging. It outperforms conventional confocal or two-photon LSM in terms of gentle imaging conditions (sensitivity increased by a factor of 4–8). There is no restriction to specific laser wavelengths or specific objectives. In other words, it is straightforward to acquire four channel images across the visible spectrum (from blue to far red) in an incubated glass-bottom petri dish, with the cell culture in conventional (but phenol-red free) culture medium, at 37°C using, for example, a 63x/1.2 water immersion objective.

SR-SIM: is compatible with live-cell imaging; there is no requirement for particularly high laser power or specific dyes to achieve super-resolution. It is straightforward to acquire four channel images across the visible spectrum (from blue to far red) in an incubated glass-bottom petri dish, with the cell culture in conventional (but phenol-red free) culture

medium, at 37°C using, for example, a 63x/1.2 water immersion objective.

PALM/dSTORM: is not considered compatible with live-cell imaging. While there is no requirement for particularly high laser power to achieve super-resolution, it is very difficult to acquire meaningful data in terms of super-resolution images and in the context of live imaging. Photoactivation of individual fluorescent proteins (PALM) and other types of switching (eg passive) can be achieved in live-cell imaging, but the choices of fluorophores are limited.

STED: brings the highest irradiation dosage to the specimen, because of the high-intensity depletion beam. It is therefore considered the least gentle super-resolution imaging technique. It has been demonstrated early on in the context of live-cell imaging (Bottanelli *et al*, 2016), but it still remains a challenging modality for STED microscopy. Moreover, it is restricted to the dyes that can be depleted by the offered laser wavelengths. Considerable effort is being put into development of STED microscopes that utilize less power in the depletion beam (eg using pulsed lasers and gated detection). Alternatively, one can also deliberately choose to decrease the obtainable super-resolution (to levels similar to those of Airyscan or SR-SIM) by reducing the laser power of the depletion beam.

Speed/live-cell imaging

SR-SIM: delivers the highest acquisition speed at full FOV. As a camera-based method, SR-SIM acquires a large FOV (eg 66µm with around 1200 x 1200 pixels) in a very short time (around 1–10 frames per second – limited by the time required

to move the grating orientation and frame rate of the camera). Simultaneous acquisition of multiple colors is possible when using multiple cameras (*eg* using dual camera adaptors) and appropriate beam splitters.

Airyscan: as a point-scanning based method, the frame rate of Airyscan depends on the FOV used. For small zoomed-in regions (*eg* 10 x 10 μ m) speeds in excess of 30 frames per second can be acquired. Large fields of view, however, require a few seconds.

STED: as a point-scanning based method, the frame rate of STED depends on the FOV used and the number of pixels. For small zoomed-in regions (*eg* 10 x 10 μ m) speeds in excess of 30 frames per second can be acquired. Large fields of view require a few seconds. Simultaneous acquisition of two colors and FCS is possible.

PALM/dSTORM: These techniques are not considered fast. While a large FOV (*eg* 66 μ m) is acquired in a single shot of a few (10 or so) milliseconds duration, there is also the necessity to acquire thousands of individual images. This brings the temporal resolution of PALM/dSTORM images to the timescale of minutes. This is sufficient temporal resolution for the observation of very slow cellular processes. Fast processes, however, on the molecular scale, need to be examined via tracking individual molecules. While this approach does not deliver super-resolution images *per se*, the information from an individual molecule (in the form of its trajectory) brings a tremendous amount of dynamic information. Simultaneous acquisition of multiple colors is possible when using multiple cameras (*eg* using dual camera adaptors) and appropriate beam splitters.

Depth

AiryScan: could be considered the technique of choice when it comes to imaging in deep tissue or thick specimens. In particular, combining two-photon LSM with AiryScan detection offers an interesting way to reach deep into thick tissue preparations or living organisms. AiryScan is less sensitive towards changes in refractive index, scattering and inhomogeneity in the specimen and it can perform better than all other super-resolution techniques when used deep (tens of micrometers) inside tissue.

SR-SIM: performance depends on the accurate (and high contrast) projection of the illumination pattern into the specimen. While this is easily achieved in transparent and well-prepared specimens (eg cell cultures, bacteria, thin plant roots, *C. elegans*, zebrafish embryos and, in general, objects close to the coverslip surface), it rapidly becomes challenging when going into thick, over-labeled, noise-rich, scattering specimens; also very sparse, dim and quickly bleaching structures. Typically, best results are obtained from images taken up to 20 μ m distance from the coverslip.

PALM/dSTORM: the best results are obtained from regions close to the coverslip surface (around 10 μ m) and this is achieved easily in transparent and well-prepared specimens (eg fixed cell cultures, bacteria, thin plant roots, objects close to the coverslip surface). While PALM/dSTORM can operate under TIRF illumination conditions (and therefore delivers very high contrast) this aspect will be omitted here as there is virtually no depth information in this mode of operation. In terms of depth, PALM/dSTORM becomes more and more

challenging when going into thick, over-labeled, noise-rich, scattering specimens.

STED: the problems of STED with respect to depth of imaging are twofold. First, the high-intensity depletion beam needs to generate a well-shaped donut in order to provide the resolution enhancement. Projecting a well-defined donut through a thick specimen is difficult and the quality rapidly decays with penetration depth. Second, the high-power depletion beam has to cross the entire specimen, so also places a substantial laser dosage on the image planes that are not being imaged.

WHAT'S NEXT?

Optical super-resolution methods have reached the mainstream of scientific research thanks to the commercial availability of robust and well-designed microscopy platforms. The main driving force for the further development and improvement of these methods, however, comes from a vibrant and active community (of networked users and experts) that constantly pushes forward for newer, improved or alternative techniques and analysis methods, benchmark tests and protocol collections.

The main goal is to apply the techniques to live-cell imaging situations. Here, the specimen is usually, sensitive, dim and mobile in comparison to fixed samples (bright and immobile). The challenge, therefore, is to attain the highest possible super-resolution, with high contrast, acquired faster and with less laser power, in thick scattering tissues, with minimal labeling and online functional data processing. (At the same time, of course, the equipment should be economically viable and easy to use by non-experts.)

SR-SIM: the bottleneck, currently, lies in the acquisition of 15–25 raw images per final reconstructed super-resolution image. For this reason, one of the main challenges in SR-SIM is to produce microscope platforms that allow us to minimize the acquisition time in a robust manner (for example by changing to different, more time-efficient, illumination patterns). Another challenging aspect in SR-SIM is related to data reconstruction and data handling, which is currently an additional post-acquisition step on most platforms. Faster and more robust, easier-to-use reconstruction software (that

would perform a raw data quality check as it is being acquired, for example) is highly desirable.

AiryScan: allows for fast imaging over small areas, for example 100ms per image (10 frames per second). The speed drops dramatically for large fields of view to a few seconds per frame. The most promising path to address this problem is to parallelize acquisition by using multiple foci or modulating the PSF (Fast mode for ZEISS AiryScan is a step in that direction).

STED: (as a point-scanning based technique) allows for fast scanning over small fields of view. However, the high resolution obtainable with STED requires more (smaller) pixels to be scanned for a given FOV. This means it can take 10–30 seconds to produce a single STED image. Parallelization (using, for example, multiple foci) seems challenging, as it would also require multiple depletion beams. Gating and pulsed beam approaches, different forms to shape (also in 3D) the depletion beam, could improve this situation. Significant effort is also being channeled into the development of adequate dyes for STED.

PALM/dSTORM: even with the latest multi-emitter algorithms, the timescale per image depends on the number of detected molecules, labeling density, *etc.* Therefore, the trade-off is, invariably, temporal resolution versus sufficient number of molecules. There is now considerable effort being put into particle fluctuation and particle tracking approaches that are complementary to ‘conventional’ PALM/dSTORM imaging.

FURTHER INFORMATION

Reviews

Blom H, Widengren J. Stimulated emission depletion microscopy. *Chem Rev* 2017;117:7377–427. (<https://dx.doi.org/10.1021/acs.chemrev.6b00653>)

Cremer C, Masters BR. Resolution enhancement techniques in microscopy. *Eur Phys J H* 2013;38:281–344. (<https://dx.doi.org/10.1140/epjh/e2012-20060-1>)

Eggeling C, Willig KI, Sahl SJ, Hell SW. Lens-based fluorescence nanoscopy. *Q Rev Biophys* 2015;48:178–243. (<https://dx.doi.org/10.1017/S0033583514000146>)

Schermelleh L, Heintzmann R, Leonhardt H. A guide to super-resolution fluorescence microscopy. *JCB* 2010;190:165. (<https://dx.doi.org/10.1083/jcb.201002018>)

Sheppard C. Fundamentals of superresolution. *Micron* 2007;38:165–9. (<https://dx.doi.org/10.1016/j.micron.2006.07.012>)

Sample preparation guide and review for PALM, dSTORM and related

Allen JR, Ross ST, Davidson MW. Sample preparation for single molecule localization microscopy. *PCCP* 2013;15:18771–83. (<https://dx.doi.org/10.1039/c3cp53719f>)

Early publications and theoretical background for the methods

Betzig E, Patterson GH, Sougrat R, *et al.* Imaging intracellular fluorescent proteins at nanometer resolution. *Science* 2006;313:1642–5. (<https://dx.doi.org/10.1126/science.1127344>)

De Luca GM, Breedijk RM, Brandt RA, *et al.* Re-scan confocal microscopy: scanning twice for better resolution. *BOE* 2013;4:2644–56. (<https://dx.doi.org/10.1364/BOE.4.002644>)

Gustafsson MG. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. *J Microsc* 2000;198:82–7. (<https://dx.doi.org/10.1046/j.1365-2818.2000.00710.x>)

Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. *Opt Lett* 1994;19:780–2. (<https://dx.doi.org/10.1364/OL.19.000780>)

Cox IJ, Sheppard CJR, Wilson T. Super-resolution by confocal fluorescent microscopy. *Optik* 1982;60:391–6.

SR-SIM (applications)

Karimi-Ashtiyani R, Ishii T, Niessen M, *et al.* Point mutation impairs centromeric CENH3 loading and induces haploid plants. *PNAS* 2015;112:11211–6. (<https://dx.doi.org/10.1073/pnas.1504333112>)

Monteiro JM, Fernandes PB, Vax F, *et al.* Cell shape dynamics during the staphylococcal cell cycle. *Nature Comm* 2015; 6:8055. (<https://dx.doi.org/10.1038/ncomms9055>)

Neumann B, Coakley S, Giordano-Santini R, *et al.* EFF-1-mediated regenerative axonal fusion requires components of the apoptotic pathway. *Nature* 2015;517:219–22. (<https://dx.doi.org/10.1038/nature14102>)

PALM/dSTORM (applications)

Muriel O, Echarri A, Hellriegel C, *et al.* Phosphorylated filamin A regulates actin-linked caveolae dynamics. *J Cell Sci* 2011;124:2763–76. (<https://dx.doi.org/10.1242/jcs.080804>)

Liebmann T, Blom H, Aperia A, Brismar J. Nanoscale elucidation of Na,K-ATPase isoforms in dendritic spines. *Opt Nanosc* 2013;2:6. (<https://dx.doi.org/10.1186/2192-2853-2-6>)

Löschberger A, van de Linde S, Debauvalle M-C, *et al.* Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. *J Cell Sci* 2012;125:570–5. (<https://dx.doi.org/10.1242/jcs.098822>)

Nan B, Bandaria JM, Moghtaderi A, *et al.* Flagella stator homologs function as motors for myxobacterial gliding motility by moving in helical trajectories. *PNAS* 2013;110:E1508–13. (<https://dx.doi.org/10.1073/pnas.1219982110>)

Airy scan (applications)

Kolossov V, Sivaguru M, Huff J, *et al.* Airyscan super-resolution microscopy of mitochondrial morphology and dynamics in living tumor cells. *Mic Res Tech* 2016;81:1–14. (<https://dx.doi.org/10.1002/jemt.22732>)

Yap CC, Digilio L, McMahon L, Winckler B. The endosomal neuronal proteins Nsg1/NEEP21 and Nsg2/P19 are itinerant, not resident proteins of dendritic endosomes. *Sci Rep* 2017;7:10481. (<https://dx.doi.org/10.1038/s41598-017-07667-x>)

STED (applications)

Bottanelli F, Kromann EB, Allgeyer RS, *et al.* Two-colour live-cell nanoscale imaging of intracellular targets. *Nat Commun* 2016;7:10778. (<https://dx.doi.org/10.1038/ncomms10778>)

Unnersjö-Jess D, Scott L, Blom H, Brismar H. Super-resolution stimulated emission depletion imaging of slit diaphragm proteins in optically cleared kidney tissue. *Kidney Int* 2015;89:243–7. (<https://dx.doi.org/10.1038/ki.2015.308>)

