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引言

“我听说过类器官 , 并且认为类器官可能是适用于我感

兴趣的研究领域的完美模型” , 慕尼黑工业大学营养生理学实

验室首席研究员Tamara Zietek说。 在使用类器官之前 ,  Zietek 

的研究小组使用在体（小鼠）和离体（细胞系）系统进行研究 , 

但是他们也在寻找一种可以结合两者优点的系统。 使用原代

细胞培养是一种改进方法 , 但是由于细胞不能传代 , 所以此

系统不能用于长期研究。 因此 ,  Zietek使用类器官模型系统

进行研究 ,  以便更好地了解肠道营养成分的运输和感知。 

近年来 , 随着对器官生理学、  发育和维持的深入了解 , 我们已 

经能够制备三维（3D）类器官 , 类器官是一种培养的3D细胞结构 , 

能够模拟器官功能、  组成和发育特征。 鉴于身体器官是三维结构 , 

而类器官可以更好地重现在体内的信号传导和形态 , 所以在器官研

究中类器官比二维培养系统更具代表性。 因此 , 科学家已开始使用

类器官研究人体正常和病理状况 , 以及用其去试验人类疾病的潜在

疗法。 

培养类器官的方法具有组织依赖性 , 但一些总的原则适用。 科学

家在细胞外基质中嵌入起始材料 , 例如来源于多能干细胞（PSCs）的

祖细胞或从组织标本中获取的成体干细胞（ASCs）。 在含有模拟体内

细胞环境必需的营养成分和生长因子的培养基中进行细胞培养。 在这

些条件下 , 起始细胞开始扩增 , 并且自行组织构建可以长时间保持的

3D结构（类器官）。 对于一些上皮性类器官（例如 , 肠道类器官） , 可

以通过常规传代无限期地维持培养物（即 , 将类器官剪成小块并在新

培养基中重新种植培养）。 

明确类器官的培养条件并非易事。 必须满足特定条件才能保持器

官驻留的干细胞 , 并诱导其分化为适当的细胞。 类器官制备的这个基
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本特性 , 使得类器官系统成为理解器官发育 , 以及成人或组织驻留干

细胞（终生维持特定组织）生物学的理想选择。 类器官还可应用于其

他领域 , 例如细胞生物学、  药物开发和疾病研究。 类器官的广泛应用

可以显著减少动物模型的使用 , 同时允许对人体细胞进行简单的实验 , 

使得类器官成为有价值的模型系统。 因此 , 类器官模型系统迅速被全

球不同实验室采用。 

根据使用的起始细胞、  组织以及细胞来源于健康或患病组织 , 可

用多种方式对类器官进行分类。 迄今为止 , 已成功使用多种组织制备

了类器官 , 包括脑、  乳腺、  肠道、  肾、  肝、  肺、  视杯、  胰腺和前列腺。 另

外 , 使用肿瘤组织制备的类器官能够更好的模拟体内肿瘤特征和遗传

异质性 , 而在2D培养物中几乎不可能实现这些功能。 

类器官确实是理解干细胞生物学和器官发育的重大飞跃 , 但是使

用联合和/或互补技术甚至可以推动类器官更广泛的应用。 因此 , 联合

使用类器官制备和基因编辑技术CRISPR-Cas9等不断发展的技术 , 可

能对彻底研究生物学和医学问题至关重要。 

图1丨小鼠肠道类器官的光学显微镜观察结果
来源 ：STEMCELL Technologies
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历史性里程碑

针对类器官的研究和使用类器官进行的研究的主要成就 , 可以按

时间顺序参见下列重点论文：

•	 Ootani, A., Li, X., Sangiorgi, E., et al. (2009). Sustained in vitro 

intestinal epithelial culture within a Wnt-dependent stem cell niche. 

Nat. Med. 15(6):701–706.

-	 为了寻找能够模拟肠道生长和分化的培养系统 , 斯坦福大学

医学院的Calvin Kuo-Maureen Lyles D’Ambrogio教授及其同

事开发出一种制备肠道类器官的方法。 他们发现 , Wnt生长

因子拮抗剂能够抑制类器官的生长 , 而其他处理方法则可用

于触发特定类型细胞的分化 , 例如杯状细胞和肠内分泌细胞。 

•	 Sato, T., Vries, R.G., Snippert, H.J., et al. (2009). Single Lgr5 stem 

cells build crypt-villus structures in vitro without a mesenchymal 

niche. Nat. 459(7244):262–265.

-	 肠壁中的新细胞来源于隐窝（绒毛之间的凹陷）。 Toshiro 

Sato（当时在乌得勒支大学医学中心的Hans Clevers实验室

工作 , 现在庆应义塾大学医学院工作）及其同事开发了一种

系统可以诱导隐窝细胞产生类器官。 特别是科学家开始使用

表达Lgr5的隐窝细胞制备这些类器官 , 而Lgr5能够触发细胞

发生循环。 

•	 Sato, T., Stange, D.E., Ferrante, M., et al. (2011). Long-term expan-

sion of epithelial organoids from human colon, adenoma, adeno-

carcinoma, and Barrett’s epithelium. Gastroenterology 141(5):1762–

1772.

-	 Sato及其同事继续研究使用隐窝来源的干细胞制备肠道类器
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官 , 开发了使用小鼠结肠和人类小肠与结肠培养出健康和疾

病特异性类器官的方法。 对这些类器官培养方法进行优化后 , 

Sato的团队报告：“我们开发了一种可用于研究人类胃肠道感

染、  炎症或肿瘤的技术。”研究人员补充道 , 他们没有发现“离

体成体干细胞的复制潜力存在固有限制”。 

•	 Spence, J.R., Mayhew, C.N., Rankin, S.A. (2011). Directed differ-

entiation of human pluripotent stem cells into intestinal tissue in 

vitro. Nat. 470(7332):105–109.

-	 Jason Spence（当时在辛辛那提儿童医院医疗中心工作 , 现在

是密歇根大学医学院内科副教授）及其同事使用hPSCs开发

出了一种“强大而有效的方法 , 通过对一系列生长因子进行

时序调节来模拟胚胎肠道的发育过程 , 诱导hPSCs分化为肠

道组织。”这种方法包括内胚层形成和模式确定 , 后肠规格和

形态发生 , 以及用于肠道生长、  形态发生和细胞分化的培养系

统。 Spence的研究小组指出：“由此产生的三D肠道‘类器官’

由极化的柱状上皮组成 , 后者可以形成绒毛状结构和表达肠

道干细胞标志物的隐窝样增殖区”。 

•	 Kadoshima, T., Sakaguchi, H., Nakano, T., et al. (2013). Self-orga-

nization of axial polarity, inside-out layer pattern, and species-spe-

cific progenitor dynamics in human ES cell-derived neocortex. 

Proc. Natl. Acad. Sci. USA 110(50):20284–20289.

-	 以来源于人胚胎干细胞的皮质神经上皮为研究对象 , Taisuke 

Kadoshima（当时在RIKEN发育生物学中心工作 , 目前在

Asubio Pharma工作）及其合作者在神经类器官中研究了新皮

质发生。 研究人员指出：“自行组织的皮层组织会沿着背侧–

腹侧轴线自发形成极性 , 并会出现区域特异性滚动性形态发
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生 , 产生半球形结构。”“神经上皮可以自行形成一个多层结

构 , 包括三个神经元区域（副板、 皮质板和Cajal-Retzius细胞区

域）和三个祖细胞区域（脑室区、 脑室下区和中间区） , 按照人

类妊娠中早期观察到的胎儿皮层从顶端到基底的顺序排列。”

基于这些和其他特征 , 科学家得出结论：“人类新皮层发生包

括能够让复杂的新皮质特征出现的内在流程。”

•	 Lancaster, M.A., Renner, M., Martin, C.A., et al. (2013). Cerebral 

organoids model human brain development and microcephaly. Nat. 

501(7467):373–379.

-	 Madeline Lancaster（当时在奥地利学院分子生物技术研究所

工作 , 目前是医学研究委员会（MRC）分子生物学实验室的

首席研究员）及其同事指出：“人类大脑的复杂性导致难以在

模型生物体中研究许多脑部疾病 , 突出了对人类大脑发育的体

外模型的需求。”使用健康对照者和小头畸形患者的hPSCs制

备了多种脑类器官。 除了可以形成类似大脑皮质这样的区域

外 , 这些类器官还可以“重现人类大脑皮质的发育特征 , 即：

具有丰富外部放射状胶质干细胞的特征性祖细胞结构 , ”Lan-

caster的团队指出。 

•	 Bagley, J.A., Reumann, D., Bian, S., et al. (2017). Fused cerebral 

organoids model interactions between brain regions. Nat. Methods 

15:734–751.

-	 为了制备神经类器官对大脑进行更高级的研究 , 3D结构需要

能够代表一些大脑区域。 为了制备这样的神经类器官 , Josh-

ua Bagley（奥地利维也纳奥地利科学院分子生物技术研究所

Juergen Knoblich实验室的博士后研究员）及其同事利用人诱

导PSC（iPSCs）及其融合细胞 , 使用小分子模式制备了背侧
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和腹侧脑类器官。 这些结构能够显示人类胚胎脑中的一些发

育过程 , 包括在大脑腹侧部分发育并迁移到背部区域的产生γ-

氨基丁酸（GABA）的中间神经元。 研究人员发现 , 迁移细

胞是表达HuC/D的神经元 , 而表达MAP2则代表成熟神经元。 

基于其他分子标志物 , 科学家报道：“我们的结果表明 , 类 

器官融合包含了来自主要腹侧前脑亚区的多种中间神经元亚

型。”通过制备模仿其他大脑区域的类器官并对其进行融合 , 

可以这种方法研究多种神经元回路。 

•	 Birey, F., Andersen, J., Makinson, C.D., et al. (2017). Assembly of 

functionally integrated human forebrain spheroids. Nat. 545:54–59.

-	 背侧前脑 , 也被称为大脑皮质 , 含有释放神经递质谷氨酸的兴

奋性神经元。 腹侧前脑或皮质下区 , 包含释放GABA的抑制

性神经元。 为了研究皮质中神经回路的发育情况 , Fikri Birey

（斯坦福大学Sergiu Paşca实验室的博士后研究员）及其同事

们使用hPSCs制备了人类皮质（背侧）球状体（hCS）和人

类皮质下区球状体（hSS）。 将两种球体放入试管中 , 三天内

可发生融合。 科学家使用绿色荧光蛋白（GFP）发现 , 细胞

从hSS转移到hCS。 该团队使用这种模型研究了Timothy综

合征（TS） , TS表现为皮质神经元迁移缺陷导致的多种神经

缺陷 , 包括自闭症谱系障碍。 科学家们使用来自TS患者的细

胞制备了hCS和hSS。 与来自对照受试者的hCS-hSS结构相

比 , 神经元在来自TS患者的结构中迁移速度更慢。 对啮齿类

动物模型进行的研究表明 , L型钙通道（LTCC）迁移在TS致

病过程中发挥了一定作用。 Birey的研究小组指出“通过降低

LTCC的活性 , 可以恢复携带TS功能获得突变的中间神经元的

迁移缺陷。”目前 , 可以对患者来源的自闭症模型中的皮质兴

奋–抑制平衡进行体外机制研究。 这项工作显示 , 即使在皮
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质中 , 也可以使用类器官探索神经发育的解剖学和分子特征。 

•	 Freedman, B.S., Brooks, C.R., Lam, A.Q., et al. (2015). Modelling 

kidney disease with CRISPR-mutant kidney organoids derived from 

human pluripotent epiblast spheroids. Nat. Commun. 6:8715.

-	 Benjamin Freedman（当时在哈佛大学医学院工作 , 目前在

华盛顿大学医学院工作）及其合作者研究了人多能干细胞

（hPSC）来源的肾细胞是否能“重建组织特异性表型。”为

了寻找答案 , 研究人员制备了上胚层期hPSCs的3D培养物 , 并 

发现抑制酶–糖原合成酶激酶3β（GSK3β）能够诱导球状体

分化成“节段性、 肾单位样肾脏类器官 , 这种类器官含有的细

胞群具有近端小管、 足细胞和内皮细胞的特征。”此外 , 科学

家还发现 , 基因调控可用于创建疾病模型。 例如 , 作者报道：

“敲除多囊肾病基因PKD1或PKD2可诱导肾脏小管形成囊

肿。”

•	 Takasato, M., Er, P.X., Chiu, H.S., et al. (2015). Kidney organoids 

from human iPS cells contain multiple lineages and model human 

nephrogenesis. Nat. 526(7574):564–568.

-	 肾脏展示了构建可靠的可复制的类器官所需的细胞类型多

样性。 “再生肾脏需要诱导20多种不同的细胞类型 , 这些细

胞分别负责分泌、 调节pH以及电解质和体液平衡” , Minoru 

Takasato（当时在昆士兰大学工作 , 目前在RIKEN生物系统

动力学研究中心工作）及其科研团队指出。 这些细胞可以构

建肾脏的特定部分 , 例如集合管和肾单位。 在这篇论文中 , 

Takasato及其同事介绍了一种能够制备包含这些结构的肾脏

类器官的技术。 研究人员指出：“在这些类器官中 , 单个肾单

位可分为远端和近端小管、 早期Henle环 , 以及包含足细胞的 
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肾小球 , 可阐述足化过程和进行血管形成。”研究人员得出结

论 , 这些肾脏类器官可用于未来的应用 , 包括肾毒性筛查、 疾

病建模和治疗细胞的来源。”
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实践应用

类器官类型和培养条件
类器官系统有两种主要类别：从PSCs培养的类器官和从成体干

细胞或祖细胞培养的类器官。 可以通过诱导PSCs分化成形成所需类

器官的谱系特异性祖细胞制备PSC来源的类器官。 在模拟目标器官体

内发育环境的条件下对这些祖细胞进行培养 , 最终可以形成类器官。 

对于脑类器官 , 通过忽略或添加模式因子 , 类器官可以自行组织成具

有几个不同脑区的类器官（例如 , 脑类器官） , 或者可以被引导形成具

有特定脑区的类器官（例如 , 前脑或中脑类器官）。 PSC来源的类器官

的优点是起始材料易于获取 , 因为可以使用既往建立的或患者特异性

PSC细胞系。 这些类器官能够模拟发育中的器官 , 而不是成体器官。 

ASC来源的类器官来自于在体内负责维持该器官的组织特异性干细胞

或祖细胞。 这些祖细胞来源的类器官能够更好地模拟成人组织 , 具有

可以模拟先天性和非先天性疾病状态的优点 , 包括模拟表观遗传特征

和肿瘤特征。 

两类类器官都使用细胞外基质内的特定细胞培养基进行培养 , 这

些细胞外基质是支撑3D结构的必需条件。 使用的细胞培养基取决于

类器官的类型和来源组织 , 并且通常可以模拟被培养细胞在体内的信

号传导环境。 对于PSC来源的脑类器官 , 培养条件模拟发育脑内的信

号传导 , 允许类器官早期阶段存在的神经祖细胞分化并自行组织形成

大脑的层状结构。 ASC来源的肠道类器官的培养条件可以通过类似的

方式模拟肠隐窝基底部的信号传导、 干细胞群以及这些干细胞亚群分

化形成肠道的细胞补充。 

成体干细胞来源的类器官
Sato等人（2009）开发了一种从分离的肠隐窝中培养ASC来源的

肠道类器官的方法。 这种方法开启了器官型3D细胞培养技术的十年创
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新。 这些肠道类器官培养模型利用了肠道干细胞的生物学 , 即这些细

胞终生在体内分裂活跃 , 可以补充自身细胞群 , 并且每5~10天可以完成

全部肠道上皮细胞的更新。 在类器官培养系统中 , 包含了能够在体内

实现这些补充特性的环境条件。 这允许使用相同的细胞在体外构建真

正的肠道模型。 在内环境稳定的情况下 , 虽然并非所有组织都带有再

生能力相同的ASCs , 但是许多器官都含有在特定条件下能够再生组织

的细胞群。 这使得研究人员能够开发出多种组织的类器官培养条件 , 

包括肝脏、  胰腺、  前列腺、  乳腺和气道。 

使用ASCs制备类器官有几个优点。 首先 , 因为培养物来源于表型

成体细胞 , 所得的培养物也倾向于具有成体表型。 制备方案也可能比

PSC来源类器官的制备方案更简短 , 因为起始材料已经是组织特异性

祖细胞。 这些技术相对容易学习和使用 , 有助于实验室将类器官实验

添加到已经建立的实验库中。 制备之后 , 许多ASC来源的类器官培养

物可以通过常规传代进行长期维持 , 并且可以冷冻保存。 不过 , 原始

起始材料需要患者活检并获得相关知情同意 , 这可能会明显限制许多

研究人员获取这些材料 , 尤其是工业实验室。 

虽然ASC和PSC来源的类器官的应用范围存在大量重叠 , 但ASC

来源的类器官特别适合某些特殊用途。 例如 , ASC来源的类器官可用

于模拟非遗传性疾病和癌症 , 而使用PSC来源的系统模拟这两类疾病

的难度很大。 实际上 , 使用ASC来源的肿瘤类器官构建患者特异性肿

瘤模型 , 已经获得了越来越多研究者的认可。 类器官中的癌症特征、 遗

传异质性和药物反应特征具有高保真度 , 可用于精准医学应用。 

成体干细胞的来源对于成功制备和使用类器官至关重要。 研究人

员经常使用小鼠类器官比较体内和体外研究的结果。 然而 , 使用人干

细胞制备的类器官具有独特的用途 , 例如研究患者自身肿瘤的治疗反

应（精准医学）或人干细胞的基础生物学。 

与任何新兴技术一样 , 类器官是否是适用于特定用途的模型系统 , 

必须进行验证。 例如 , Zietek等人（2015）使用野生型小鼠和缺乏特
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图2丨成体干细胞来源的类器官 ：（a）人结肠类器官 ；（b）小鼠前列腺类器官 ；（c）胰腺外
分泌类器官 ；和（d）肝脏祖细胞类器官
来源 ：STEMCELL Technologies
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定营养转运蛋白的小鼠制备了肠道类器官。 结果显示 , 这种类器官因

为保持了小鼠肠道的表型和功能特征 , 可以作为很好的研究模型。 同

样 , 目前正在探索将ASC来源的类器官用于基础、 学术研究和药物开发

等诸多领域。 

成体干细胞的病例研究
肠道粘膜表面的上皮细胞每5~7天更新一次。 隐窝中的干细胞是

这种自我更新的来源 , 这些干细胞经过刺激可以分化为肠道内的任何

细胞类型。 为了探索其中的分子机制 , Sehgal等人（2018）使用温和

细胞离解试剂从小鼠小肠中分离了隐窝 , 然后使用IntestiCult™类器官

生长培养基（小鼠）培养隐窝以制备肠道类器官。 科学家已经知道集

落刺激因子1（CSF1）在肠道上皮细胞的维持中发挥作用 , 但具体机

制尚不清楚。 

CSF1能够驱动单核细胞分化为巨噬细胞。 通过巨噬细胞消融和

CSF1R阻断研究 , 科学家发现CSF1依赖性巨噬细胞可以通过帮助肠

道上皮Paneth细胞（Paneth细胞能够释放抗菌素抑制隐窝内细菌感

染 , 并防止细菌穿过肠道上皮细胞）分化来“影响肠道上皮细胞分化

和内环境稳定”。 这项工作得出两个结论：1）使用类器官能够快速评

估CSF1在有生理学意义的体外细胞培养模型中的作用；2）深入了解

了CSF1R依赖性隐窝相关性巨噬细胞 , 这些巨噬细胞是“维持小肠肠

道干细胞生态位所必需的基础成分”。 

另一个示例是使用类器官进行肝脏研究。 Broutier等人（2017）

报道了使用未治疗的原发性肝癌（PLC）患者的肝脏肿瘤组织制备肿

瘤类器官。 通过这项技术 , 研究人员使用三种最常见的PLC亚型制备

了类器官：肝细胞癌（HCC）、 胆管癌（CC）和HCC/CC（CHC）联

合性肿瘤。 

几项比较性研究证实 , 类器官能够模仿原始肿瘤。 在组织学上 , 

肿瘤类器官能够保持每种肿瘤亚型的患者特异性和异质性形态特征。 
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例如 , HCC和CHC肿瘤类器官含有致密结构 , 而CC肿瘤类器官则含

有不规则的囊性结构 , 所有这些特征都不同于健康肝脏类器官中有序

的囊状结构。 基于全基因组转录组学分析（RNA测序或RNAseq）以

及与PLC亚型的已知基因表达模式进行比较 , Broutier等人发现：“基

图3丨没有明显的形态学改变可用于鉴别抗CSF1R或CSF1处理过的小鼠肠道类器官
来源 ：Sehgal, A., Donaldson, D.S., Pridans, C., et al. (2018). The role of CSF1R-dependent 

macrophages in control of  the intestinal stem cell niche. Nature Commun., 9:1272. 

Doi:10.1038/s41467-018-03638-6.
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因表达相关性分析显示 , 每个肿瘤类器官系与其相应的来源组织相关 , 

但与其他亚型无关。”

Broutier等人使用这些类器官寻找可能用于PLC治疗的细胞外信

号调节激酶（ERK）途径抑制剂。 正如研究人员的总结 , 这项工作显

示“PLC来源的类器官模型具有广泛的生物医学用途 , 可以帮助深入

了解肝癌生物学以及开发针对这种疾病的个体化治疗。”

多能干细胞来源的类器官
如上所述 , 也可以使用PSC制备类器官。 起始细胞可以是已建立

的PSC细胞系或患者特异性诱导PSCs（iPSCs）。 PSCs可分化为身体

中任何类型细胞的能力以及无限增殖的能力 , 使得PSCs成为类器官培

养非常方便的起始细胞。

已经开发了PSC来源的类器官培养系统 , 用于模拟来自所有三个

胚层的组织：内胚层、 外胚层和中胚层。 这些系统能够模仿建模组织

的生物学 , 例如 , 脑类器官可以模拟发育中的人类大脑的发育过程和

组织结构。 使用STEMdiff™脑类器官试剂盒可以制备和维持这些类

器官。 与这些类器官模拟的大脑组织一样 , 如果它们能够获得合适的

营养元素 , 类器官内的细胞可以维持数周和数月 , 但不能用于启动新

的类器官培养物。 这类似于在发育期间含有增殖性祖细胞并且在成年

期失去绝大部分产生新神经元能力的在体脑组织。 类器官与一些器官

（例如 , 肠道）的上皮成分形成对比 , 这些上皮成分能够维持活跃的成

体干细胞群 , 可以不断补充器官细胞。 PSCs可以诱导分化为这些细胞

谱系 , 并且能够产生带有ASC来源类器官许多生长特性的器官。 例如 , 

可以通过使用STEMdiff™肠类器官试剂盒进行常规传代 , 长期制备和

维持PSC来源的肠道类器官。 

使用PSCs制备类器官带来许多优点。 与获取患者活检组织相比 , 

使用PSCs制备类器官时获取起始材料相对容易。 制备的患者特异性

iPSCs可用于制备携带特定遗传密码的类器官。 以hPSCs作为起始细胞
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图4丨人PLC肿瘤类器官在长期培养中可以保持原始组织的表达模式。（a）PLC的HCC和CC

亚型通过不同途径发病。（b）免疫组织化学检测PLC组织亚型的肝细胞/HCC（HepPar1）和
导管/CC（EpCAM）标志物。 （比例尺 , 125 μm ；红色虚线方块表示聚焦染色。）（c）在培
养至少3个月的肿瘤类器官上 , 免疫荧光分析显示存在HCC标志物AFP（红色）和导管/CC 

标志物EpCAM（绿色）。 （细胞核用Hoechst33342[蓝色]复染 ；比例尺 , 30 μm）
来源 ：Broutier, L., Mastrogiovanni, G., Verstegen, M.M.A., et al. (2017). Human primary liver 

cancer-derived organoid cultures for disease modeling and drug screening. Nat. Med., 23:1424-

1435. doi: 10.1038/nm.4438.
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制备的人脑类器官 , 使得原本使用其他模型系统无法进行的研究变得

可能 , 因为伦理原因严重制约了获取原始神经组织。 使用PSCs构建类

器官 , 可在一种培养物中诱导多种谱系共同分化 , 从而为制备可以模

拟实际器官中各种组织的类器官提供了机会。 

虽然PSCs制备类器官有许多优点 , 这种方法也有一些挑战。 首

先 , 科学家需要擅长维持PSCs , 以确保获得高质量的起始细胞。 用于

诱导细胞分化为类器官的方案也可能非常冗长 , 需要使用多个步骤才

能模拟发育期体内细胞的发育轨迹。 

使用PSCs制备的类器官有许多用途。 使用hPSCs作为起始材料的

肠道类器官为研究肠道发育阶段提供了机会 , 例如早期传代的类器官

更像胎儿器官。 通过基因操作 , 还可以将PSC来源的类器官应用到其

他领域 , 并且可以通过转染或电穿孔添加DNA对细胞进行基因操作。 

此外 , 可以使用CRISPR-Cas9技术编辑类器官系统内的基因。 这种方

法比制备基因敲除小鼠更快。 这些类器官系统也可以与其他技术联合

使用。 例如 , 可以在类器官中重新验证使用基因敲除小鼠获得的研究

结果 , 可以在更好地反映生理条件的环境中进行机制探索。 

多能干细胞的病例研究
来源于PSCs的神经类器官也有许多用途 , 从研究正常的神经发

育和过程到分析脑部疾病。 然而 , 科学家们并不知道神经类器官是否

可用于研究神经回路中的轴突发育指导。 为此 , Giandomenico等人

（2019）使用STEMdiff™脑类器官试剂盒培养人胚胎干细胞来制备神

经类器官。 将成熟的神经类器官与小鼠脊髓组织（包括一些临近的

肌肉组织）混合 , 切成300 μm厚的切片 , 形成气–液界面的脑类器官

（ALI-COs）。 使用突触前和突触后标志物可以显示类器官中成熟神经

元树突上的突触 , 并且Giandomenico等人还使用BrainPhys™神经元

培养基在神经元中记录了自发性电活动。 此外 , 通过全细胞膜片钳注

射正电流可以触发动作电位 , 证明类器官功能成熟。 
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ALI-COs还显示了真实大脑的许多特征。 通过对不同细胞类型进

行RNAseq并且基于表达水平对结果进行聚类和主成分分析 , Giando-

menico等人发现：“分子谱显示 , 在每个聚类中 , 不同细胞类型与预期

功能之间存在明确的相关性。”此外 , 由于容易对切片培养物进行活

体成像 , Giandomenico等人还对GFP标记的神经元进行了轴突导向追

踪。 ALI-COs中的神经元甚至可以驱动脊髓附近肌肉组织发生收缩。 

有趣的是 , 使用药物或破坏轴突束可以抑制收缩。 这个模型系统能够

帮助对人类神经系统再生能力进行详细的机制研究。 

总的来说 , 这项工作显示了ALI-CO方法的优势 , 包括长期生存能

力。 ALI-COs能够维持存活长达五个月 , 这也是测试过的最长时间。 

Giandomenico等人还指出：“就我们所知 , 这些实验第一次观察到了

神经类器官的功能输出。”

随着科学家联合使用多种系统制备更精准的人体器官模型 , PSC

来源类器官的用途会进一步扩大。 在一项研究中 , Spence等人（2011）

开发了一种制备人肠类器官的方法。 这种方法使用人胚胎干细胞和

iPSCs作为起始细胞 , 后来被授权作为STEMdiff™肠类器官试剂盒的

图5丨多能干细胞来源的类器官 ：（a）人肠类器官 ；（b）人脑类器官
来源 ：STEMCELL Technologies
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基础。 Spence等人解释说 , 这种方法包括“按照时间序列操纵生长

因子” , 可以诱导内胚层形成、 后内胚层模式、 后肠规格和形态发生以

及“促进肠道生长、 形态发生和细胞分化的原肠培养系统。”这是首次

证明可以通过一种强大而有效的体外定向分化方法 , 使用人PSCs制备

“与胎儿肠道非常相似”的3D结构和细胞成分。 

Workman等人（2017）使用这种技术进一步制备了人肠类器官

（HIOs） , 其中联合使用了来源于人PSCs（hPSCs）的神经嵴细胞。 最

终成功制备了带有功能性肠道神经系统（ENS）的肠道类器官。 ENS

可以控制胃肠道的活动性和渗透性。 在HIO+ENS类器官中 , Work-

man等人使用RNAseq发现了HIO+ENS与HIO类器官的转录变化。 

此外 , 研究人员还发现了ENS细胞的神经元活动、 ENS驱动的肌肉收缩

和肠样运动。 

图6丨明场图像（左） , 显示轴突轨迹（箭头）以及人ALI-CO和小鼠脊髓及相关组织。 人特
异性STEM121（粉色）染色（右）显示 , 这些轨迹起源于ALI-CO ；MAP2（绿色）显示小
鼠脊髓中的神经元和ALI-CO中的人神经元
来 源 ：Giandomenico, S.L., Mierau, S.B., Gibbons, G.M., et al. (2019). Cerebral organoids at the 

air-liquid interface generate diverse nerve tracts with functional output. Nat. Neurosci. 22:669-

679. doi: 10.1038/s41593-019-0350-2.

小鼠组织
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图7丨人胚胎干细胞和诱导的多能干细胞可用于制备肠道类器官。 （a）在不到两周的时间内 , 
这些干细胞可以形成由间充质环绕的高度复杂的上皮结构。 （b–e）在14和28天后 , 类器官 
连续切片上的肠道转录因子（KLF5、 CDX2、 SOX9）表达和细胞增殖情况与小鼠胎儿肠发
育情况类似（f , g）。 （h , i , j）56日龄的整个类器官显示上皮表达Sox9（h）和部分“隐窝样”
表达干细胞标志物Lgr5（i）和Asc12（j）。 （插图显示每个探针的感应控制）
来源 ：Spence, J.R., Mayhew, C.N., Rankin, S.A., et al. (2011). Directed differentiation of human 
pluripotent stem cells into intestinal tissue in vitro. Nature, 470:105–109. doi: 10.1038/nature09691.
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正如科学家指出的：“ENS发育或功能紊乱较为常见 , 但是还没

有用于研究ENS肠道生物学和疾病的人体模型。”Workman等人探讨

了使用HIO+ENS类器官模拟先天性巨结肠的可能性 , 先天性巨结肠

是由ENS发育缺陷导致的先天性便秘。 多种基因参与了此病的致病过

程 , 其中一种基因是突变的成对同源框2B（PHOX2B） , 它可导致人类

和小鼠肠道神经元完全缺失。 Workman等人解释说：“虽然表型明确 , 

但是在人类中还没有发现PHOX2B突变致病的分子途径 , 因此我们使

用HIO+ENS作为模型系统来研究这种形式的先天性巨结肠”。 

图8丨使用PHOX2B神经嵴细胞制备的HIOs+ENS。 明场图像（上图）显示 , 移植携带三种
PHOX2B突变中一种突变的ENS后7周获取的类器官。 （分数表示生长并含有肠道上皮的类器
官数量 ；比例尺 , 2 mm。）TUBB3（中图）表示类器官中的神经元发育 , S100ß（下图）显 
示神经胶质发育。 （比例尺 , 100 μm）
来源 ：Workman, M.J., Mahe, M.M., Trisno, S., et al. (2017). Engineered human pluripotent stem 

cell-derived intestinal tissues with a functional enteric nervous system. Nature Medicine, 23:49–59. 

doi: 10.1038/nm.4233.
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Workman等人制备了携带多种PHOX2B突变的hPSCs , 并使用这

些细胞制备了HIO+ENS类器官。 他们得出结论：“这种人PSC来源的

肠道模型似乎非常适合对人先天性巨结肠的遗传形式进行机制研究。”
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问题与解决方案

在使用类器官的研究中 , 培养条件的标准化是关键难点。 有些方

法本身就易变 , 致使难以获得可重复的数据。 这种现象通常与使用的

培养基有关 , 因为培养基通常包括非常复杂的成分 , 准备这些培养基

费时费力 , 并且性能易变化。 已公布的培养基成分也存在差异 , 导致

培养条件标准化几乎不太可能。 这种不一致性会导致不同实验室之间

的协作和可重复性面临挑战。 

使用全套商业化培养基可作为实验室资源管理的一个有效措施 , 

还可更轻松地对不同实验、 不同用户和不同协作者之间的数据进行比

较。 例如 , 为了使用小鼠肠道细胞制备和维持小鼠肠道类器官 , 可以使

用IntestiCult™类器官生长培养基（小鼠）作为无血清培养基的一个选

择。 这种培养基还可用于制备包含成体肠道上皮中所有预期细胞类型

的小鼠肠道类器官。 与此类似 , IntestiCult™类器官生长培养基（人）

可用于制备和维持人肠类器官。 STEMCELL Technologies公司还提供

了其他产品 , 可以为培养多种组织（包括肝脏和胰腺）的ASC来源类

器官提供支持。 

除了不同的培养基成分之外 , 不同的干细胞分化方案也会导致明

显不同的结果 , 因此 , 很难或几乎不可能去比较不同实验室使用不同

分化方案获得的数据。 

支持类器官生长的细胞外基质也可能导致不同的结果。 许多研

究人员使用不明确的来源于小鼠肿瘤的细胞外基质 , 而这种基质本身

就在各批次之间存在较大差异。 为了制定标准化方案并获得一致的结

果 , 应对理想的基质进行界定 , 或至少做些筛选 , 以确保与需要的细胞

培养条件相容。 

类器官的物理特性会导致分析困难。 类器官形状（从简单的球体

到更复杂的结构）也会影响分析。 有时 , 同一种类器官的形状可能不

同。 这些特征可能导致难以对特征进行定量分析 , 尤其是因为类器官



类器官研究技术 25

非常厚 , 常规复式显微镜无法对整个结构进行成像。 因此 , 科学家们

考虑将类器官切片后进行分析 , 或者使用更复杂的深部组织成像技术 , 

但是这些方法仍然不可能提供类器官内部结构的完整图像。 不过 , 通

过使用多光子显微镜等手段 , 例如双光子和三光子成像技术 , 科学家

们可以更深入地研究类器官 , 并在某些情况下能观察整个结构。 

类器官研究面临的一些挑战可通过不同实验室间的协助和对方案

进行标准化来解决。 对这个领域使用的术语进行标准化 , 也会对研究

有所帮助。 例如 , 一些论文仍然使用“类器官”这个词来描述通常理

解的球状体 , 或者用法不总一致的组织特异性术语（例如：肠道类器

官或支气管球）。 

提高类器官培养的一致性是关键。 如果科学家能更多地制定和使

用那些明确定义、 一致性的实验方案与材料 , 就会产生更多可重复和能

比较的数据 , 有更多研究结果能应用于医疗。 
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未来方向

今后类器官带来的益处 , 不仅在于我们将其应用于哪些领域 , 还

取决于如何使用类器官。 一个示例就是单层膜。 可以将类器官打碎并

用于单层种植培养 , 从而制备具有细胞异质性和2D培养便捷性的类器

官。 van der Hee（2018）发现 , 使用类器官制备的单层膜能够测量营

养成分转运、 屏障功能以及与肠道细菌的相互作用。 

其他结构性适应 , 如将类器官整合到器官芯片中。 器官芯片是一

种包含可用于向内部细胞提供营养的小通道系统的设备。 位于波士顿

的Emulate公司发现这种系统可用于研究生物学 , 改善人类健康 , 以及

开发新型个人健康应用。 该公司已经开发出了肺癌、 肝癌和肠癌芯片。 

荷兰的MIMETAS公司开发了OrganoPlate™ , 该公司称其为“微流体

3D细胞培养板 , 可在单个平板上支持多达96个组织模型。”MIMETAS

公司使用微流体系统制备了多种模型 , 包括灌注肠道上皮小管、 多种人

神经元模型和人肝脏模型以及一种人肾脏模型。 通过使用在类器官培

养物中生长的细胞填充器官芯片系统 , 研究人员可以获得更高的生物

学相关性和复杂度 , 这是单用其他任何一种系统都无法实现的。 

类器官向前发展的重要一步 , 就是去认识这种系统的真实效用及

其不足 , 尤其是在临床应用中。 例如 , Berkers等人（2019）使用囊性纤

维化（CF）患者的直肠组织制备了类器官。 一种名为毛喉素的化合

物可导致使用健康直肠组织而非CF患者直肠组织制备的类器官发生肿

胀。 药物驱动的CFTR活性改善 , 触发了CF来源类器官发生毛喉素诱

导性肿胀（FIS）；在患者中也会观察到同样的现象。 Berkers等人总结：

“在CF患者直肠类器官中对FIS进行的体外药物疗效检测与CFTR调节

剂最重要的体内反应指标相关。”虽然这项工作和其他研究分别获得了

类似的目标 , 仍需要更多的合作来观察对患者治疗产生的近期影响。 

另一个潜在的临床应用 , 是通过功能性类器官移植进行细胞治疗。 

Cortez等人（2018）将人肠类器官移植到免疫抑制小鼠的肠系膜中 , 



类器官研究技术 27

之后类器官存活并生长。 目前 , 正在进行多种研究 , 探索将概念验证

研究的结果转化为临床实践的可能性（Takebe等人 , 2018）。 

基于新的和一致性更高的方法 , 类器官的研究将不断拓展。 此外 , 

将从其他技术获得的结果和类器官研究结果相结合 , 还有助于更细致

地了解生物系统 , 开辟疾病治疗的新途径。 
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