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DNAZJiSRNAMZE 5 Fiy 4 an i 18, 2= EH YRR AS
AR AR F B - R HGE, 50F BB Y R DNA
FPal, RRFEFARA LRI —1> B iR 2 EA GBI K TAER 75
H=RK:

L AR A AL R AR R R SR AR o 0l i R AN B

IR AEHIBG 2R 7, BT B 221 S RN S 2 RSB
2. BRI SR AR R R R R R AL o BB — DR R )
B R IR AR EE40 (SV40) 5 BIAE AR A/ SRR AR
1BENY o X PR VR R B DNASE A 5 5 K 41 A (O REATL AL S5
FTER R R FRIL, (VAR "R FREREE T

3. RPN A S I R A S . RIMIREE I A DL E A F 2R
HIHACN T AT AE, TIREJE R BB LRSS 1R — & TN A
TN R s o A B 22 (R 4 G B AR T T 0 S AR Y
DNAYEERTEE (DSB), LUKEE/ERINIRTEDNAEE

AFEE N REEBRETR, FFHIFRECRISPR-Cas R4, E
AAART B AN T A SR AT A Z R AR AL BT 50 o FAT 108 T %40
SRR — L B, TR K o X 28 (] L) SR o B> XX
—& N B H A RS, HATREARAA I A T T
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CRISPR-Cas9# K58 A : ICRISPR-Cas# 48 AR U2 MRKET AW EFH R,
CRISPR-Cas92 i 45 X YRNAS TR B G R BARG L o4, TREKZNFFFHAL
%4 X FHHADNA (L),

B FLRETEKRNFERNGHEFERER Ceiamit, £M3E5Km) Hhkk, E4
REFREEZ (RBT, PRARGR) FPHERALANERREEY, XESTRAATERGH
Bty (EmEim),
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fBHRERARIERARELE

PR 11014 TN DT 2 A 7 & B AT 5 0L R e ME DS BRY 2 FH i 5 2
Z—, HN A RAEINEHADNAT AR T — o X el 5ok
JETHE, RAIHEAE—ABERA “REMEC A" B ERDNAF
1, UIFIF I IDNA o B AR R B < A #4 FH TDNABUR 1 43 F
FORERRAE, (HEARBIFFS (B H6-8 bp) HIFME I, FHEMELIER
Fo et R A e T A T2 RAT .

R v B R A R T SRR 1, BHIF N BT & T Designert% iR
filg o JXLEHRE OIRIT IV B 0T, CIEFEZIRRE (ZFNs) FIRE RIS
HF RN YIH%ERES (TALENSs), EA1&H 55557 E DNALS & 15k
A AR I LR B A - DNASE G I8H A0 7 AR FZ R B A T
HIDSBsAE BUFR (L T ¥ERF 1 o BEFRESFO A = HERDNAJF S,
BlER B ERr R EDNA N VI BEA D) E15, (AnFok 17) S AR
F#E 1745 & fE 4, LSS B #RDSB. )5, TALENNA T % K 42 %%
T EATH, i BRI A T BN T F R 7Y - ZFNsHI
TALENs#ifd 5% EDNAJFF GEFE H12-20bp) 454, L5 DSB
RS B BRI RE f5 B R 4R o ST, FH T-ZFNSsFITALENsiX & 24,
BCRAER AR, PEE RS T e R A g S5 a2 N o

CRISPR (SR (FI PR AL RIS B R 751 ) B bR & B AN 0
M K HED) T RS R 3 R H S BB & B« CRISPR R G f# FIRNA “[a &
K85 |CRISPRAF K HINAL AR R LS &, WIS DNABRNARY
PIEl . Cas9EHE— 2R 1Z M HRICRISPRAFRZE K, — B 5 WS
RNA (gRNA) Fiixf, CasOFF Z M 1 Fe iR A AT E R E IDNAF 1 -
1) —/M20% /R (nt) BUEEM T, AR A ETE X F], B&CRIS-
PR RNA (crRNA) #)—#(4r, H 5 erRNA (tracrRNA) — i
TE B 5E B IgRNA, DL K&2) — A X 7588 25 (PAM), 1%
7560 T HE [ crRNA/RTE] X 55 89370 (1) — BLX AR5
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A
F‘ANii‘Lﬁr

B 11T TR RIS
EFATREIEIRDNA

B
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IHEER O
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B TRV RO 11111
NHEJ HDR/gHRIEE
QR TTTRTEEERRRTTITTT
E

R Illlll ]]} Illlllllll IIII F
Illlll IIII II II Illlllllll llll FAER
BbR MM T

Illlll Illl II Illllllll] Illl &5

ERBRR/ AN EREMH/AEN

B 1 : CRISPR/Cas9 # 4c¥e.f - DNA % 3%,

#DNAA 7 (A) #= % A gRNA#Cas9 (B), CRISPR-Cas9 [ 4% 4% % sty 41004 3
B 4@ FRNA (gRNA) 5Cas9F a8 L4 MR, Cas9fe £ B A FH % 5gRNAF~20nt
T R 5 FIcrRNAF 5] 249 5 5] F #6987 M K 4 F14R 82 5 (PAM) 45.%, #&/BCas9¥
3| A — A& i 2 (DSB) (C#=D) ., Cas9i% 569 DSBM & 7 i it 3k Fl )f K 3% %48 (NHEJ) (E)
RFBREABEL (HDR) £248 4, ik rHpEeR (F), NHEIFIAHERLXL2E
FIAFadkk (INDEL), MmF52h kA EEL, 4R IIAT —ADNABKEIR,
o9 0 <T VAR R X e A% 38 S HDR #2422 #7435 L CasoN-F 8 BT 2 (3 B 2% Xak116),
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i /&, CasOf 45 & HerRNA G #MYDNAF S, 3175 S PAMIF 31| 575 7
4:3-4 ntfIDSB. B 5 NIETEDNA DSB1& & M H1 65 5 1%k 24 . Hrh
B WM SRR 0 1) JEFRFEARSER (NHE)), iX /& K% 50
e E BB E R : 2) FJRESEEE (HDR). BRI
BWREGELEREEBEDNA, (ENHELTEF FDNA KL H S5
D EIAL AT R /MBS (INDEL) 2875, ;X 26INDELF] §
BRI, P AEREA/ETCYREE . FEIEE BT, HDRIEA
TDNAE #l/5, Ho 8 il kIt AR T] DUERERATIEE . 754
RIZE S, BF5E A G AT DA e — > 55 PR IR B PR (R A7 5 B TR R )
DNAIH, 2R & RS E 2R . T HDRS S5 Kl AL
FH BARTFNHEIN-SHIINDELTE A, 5 [F4H 9% 58 13X — i 258 K Y
hEe BA —E MY, TgmiEss X pi il BB E R EEH
fI4ER . M TDNARBE SHIEHE NERRY , IERAEIRR, HiF
SRR EAS) ) e i R s R



8 BERAREERREEN ARSI

CRISPRHYL TS

a0 R A% E T B (WWZFNATALEN) #HLt, CRIS-
PR-Cas RS 1 JL A58 H O RR MR A H o B 20 FAE W) 22 S50 = R i
KT HE :

%

AT 2 AJCRISPR T B A6 636 R ARAN TRE ™ & A CasZR (£, 7]
YR L PR R R, IR KA. AR SR
fil AR ERUE R ARE. O 2 A TRERARERN = EZRR
FJCRISPR A% (II. VAIVIEI 2%%) XPAMF YA RNEMERK : A
B FRPAME: Stk () TR CasZB (R BENS iR I 12 B85 7 15, o

57

CRISPRAT{L, T b 4 A BRI B FR ALK 417 51 R NA,
BRI R B T R SE K 412558 - B HICRISPR T HLFh 2
%, (1B R I B BRAMAAGSME (% w2 VLA 1 A TR B ARG 7, 1%
P,

&

CRISPRYEH® & FIRUR I TSR A RERA, FEAR
A G Res TR 15 B 2 AR s B ML - a0, BARREERAE S H IR
EF LN EEMFEREE RN “FZEE" MR, DK R E AR
PRZR A FH TR YT « CRISPRIA F] DLl 13 & B FH2H 3 K 2 A gRNA FE SR
HATZ E m B ERI RIS, XL AT T AR G R b a5
FSESTigs

CRISPR-Cas R Gt H0HE 5 (B R F AR = 5t TR, A,
REARIMANR, RGO EHR E KGR R R — S A0 Y2 0]
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A, e R AR AT P RS E R R .

CRISPR-Cas# R &k 2 A2 4

7Y BE 7 Bl R 2K HE K22 (University of Alicante) 47 49 % &
Francisco Mojicaf# - #& H CRISPRIX MR E, HEf A T — 1 H5E
J7 5% T B B 51 2EL Bl A BRI A A A, G BB 5] 5 R R AR R R4
FAVEEE® o SEALIX — & B, A3 H B A B Al RS A R N
R E, VERHIE R % REH—ER 9 LA HT /5 2209 A 1R - Mojica
1035 I G % (U TE 2007 £ 49 Al T E S5, {HCRISPR RS K& A\ (2
I B R AOHL A 2 53X — i FR AR 2B E M ANE 2

FE20084E 20104 6], #ff 5% & BICRISPRAHL 35 & 7ECRISPR
B R A N SRS DNA SRR CasE K7 . B f5 H Virginijus Siksnys
ML ESHFFTLIN, B k2 5] 5 CRISPR RNA (crRNA) 771,
AT AT AR CasOFAT R EE A, (50 L5 [a) A1) 50508 <8 B R R 4E A7 A
@19 [ 4£, Jennifer DoudnaflEmmanuelle Charpentier[d] £ 1 & ¥
Cas9/& /15 CRISPR R G DNAYEIGE 1 AR 710 o FEX R S,
X WAL 50 3 fl ol T CRISPR R ST HY B 1> 25 ZAARNAZ 43, RlcrRNA
FtracrRNA, BEATA] LLEHAL— 55 5285 M S RNA (sgRNA), LLfEL
CRISPR AL FIE AT o DA _E5X 2645 AL T CRISPR-Cas9f
AP, PR — AT ZH I E 1 H 4 2 RNAS [ S FIDNAR
DI o X008 TR BT B R GUAE T 12 200 0 28 25 R A ) 7 v SR T 2
RIZHmiE 2ERE T HR Al o

SREETE LRSI EAE201 34 & T PX330 &2 7I|CRISPR-Cas9 i fi,
X EAZ A A7 B R ], 5X & CRISPRELA 1 R A UG ) — 4>
HAGHE" X2 T BfFCRISPR T B R A s 5 6 £ A, 015
55— CRISPRA 5 1 A 2 4 g 2 [K 4 4 58 P AICRISPR 4 8 1) 58
— AN RN o NIHLCRISPREGRE FI 4 R ESLTVE, 2% A
LN & B, H B CRISPRAH K T H & Ellis, NErE# TEIIA .
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FAPRAE A JF B 0 18 — L dRiRATHYCRISPR T H K H N A o

5T, CRISPRT EE &% B 2| T F#IRJT - Vertex Pharma-
ceuticals, Inc. 5 CRISPR Therapeutics T-20184E8 H G35 T 58— 1 H T
CRISPRIIm RIS, & 7R H N A TIRIT B - 3T M. AEiX—ia
Rrrh, B DB E RN AR, B ORgER LRGSR ) LI AL & B 4
Hil K FBCLI1 AR %, K5 R H BRI B Z RN . RE' MmN
Y B E T20184F 11 A it T B IR A CRISPRZ it o 73X —1F
FEHATHIImPRIRES H, Editas MedicineflAllerganfJ Rt 22 K IE7E 5 BT
PN &1E, LA IE AL F CEP290%: [RIAOTVS26 5. 2828, %5828 S8
LebersE RIERF 108, Zint (1% ) LE KRR E WAIHER.

A B R LFSEHCRISPR A 4

o182 F R ARIIE & M A it T2 3K 13 A CRISPR-Cas, fiff 57 A
RE N HAFE R RERAREN A EFERAENTE (E2). Cas9ZHE
— A R R R TE Y L I CRISPRAL N 85 « CasOf & A B 1~ (&
SF PR A% BR T 45 #4938 RuvCATHNH, H: 3 [ ZEPAMF 51 B 3/ FE B — 1
SR IHDSBY o H1Cas9i% 5 AUDSB j5 FINHEJE{HDR & & . NHEJ
A AS | REINDELRYTE B A0 R BE A DI RERR 2K 5848 o BE &, = A (e H
HDRI, A [R5 RS 6 & [R) VR8O DNA G R BEAR 1F S A B
BN, IR R R 228 . 1T BICRISPR-Cas9 & 45 i & - B A
5% v P B [ P 2 DR ZH AR, (B B Y gRNAEE [ 7 %71 (20 nt )
A REAE AT R R AE AL s A &)

NT B A B CasOR TEFE i BE 5248, AR AN B AR T % E H
) % P 28 1, JOIE H o — LR I 25 10 W B L 7% & (RuvCHT Y
D10AE{Hnh9 fJH840A ), {#i%E H R BEY# — %DNARE" . #5E
24 (SSB) HIEE LLDSBEAH mAREE"Y, MiXLCas9t)) M
(Cas9n) FIRRERTEMER SR T EMTAE AR o SR1TT, X FPRmS R 5k
RIEA LI I B 2, PR T HZRA .
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VEICRISPR#%4; (Cpfl, Casl2a) {#H A E KgRNAFF| (GF
H>23 nt) FYRET = RNEE, 7 LETTTN PAMFAIMHE T 1 H G
—N5 ntS ARG EE Y], XS OJERE S T8 SATHIX
A RRARE" o Casl2aidid BRE (L A TIEI AN T B H S A H &
RNA, X—FEAE BT MR PMRNARZH S EH L M eRNA, T2

cRNA-DNA
[555)

cRNA-RNA
[0

Ki)\(aa) 5| RiEfR sy FENA
KE(nt)
3-NGG (SpCas9), EREES
It 0as9 | _1000-1600|  18-24 =100 iga%ing FAL (NHES
= (I-CHY) (SgRNA) 3 NNNNGATT DSB EEBA
(NmCas9) (HDR)
Cpf1(VAZL) 5-TTTN 5 Nt EREH
i) ~ i,
Al Coci(vem) | T1100-1300 | 18-25 bk (FnCas12a) DSB ERATILS
3-H (LshCas13a).
C2c2 CasRx 5-DX23-NANz} RNATTER ;
VIE - 2 ;
(vI-DEy) | ~900—1300 |  22-30 5266 | \NA (BzCastab). | SRNA | ez
F(RfCas13d)

E2 : CRISPR-Cas9 # iy R o £ 71,

#—XCRISPRZ %5 & $#Cask Y, m% —%CRISPRZ%R E—#Caskg (K% 8
117,

CRISPR-Cas9 : REMAZ A RBIEEDLE LA S (CRISPR) -CRISPRHE X E &9 ; crRNA :
CRISPR RNA ; PAM : # & R A5 4F L % 5,
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HERNARE . —HCasl2aZ5 G T — 15 H B X FFIAEILECH) B iR H
HDNAZ T, BBt BUEH AN XA AR G645 & 6L A MR vIE A
HIHBEDNA o i X —Hp P Cas12a i 1R A1) & H irDNARY
BHIE, 4TI AR N DNAN PIEFEE [A ) CRISPR i 2R &5 14
MZ% (DETECTR) ¥,

VIZYCRISPR 2 4% (Casl3) FEAL— 1530 ntifJcrRNAF &
Y1, YT S5 HEINIBEEERNA (ssRNA) FEH 44K, BT RY)
fIssSRNALE & (7 5 B 3T fith & 3B 4% 7 1 AR Naseddi P o X Fh R Y
B4R NaseiE M O g H TR IME B2 7 b, LIRS G & O FF ERNA
SR, X FRBRWRR i vk = R SRR (EE D (SHERLOCK) .
DIRNARG SR AT R RO 2 S EE R HADNAF R AL
25, i, SEMDNARNGE RS, XL RGN REFEE, Hit
e EZ e BFRE, 1EsgRNAT| 5 i A Cas135Z LAY KT
BREL L S0/NE XRNA (shRNA) HiEEEF SR 7" . Fi,
Cas13 R 4c ] LMER —F B A 1Im PR B s 02 F VeI 7 %8, DL
RAARNAF KRR FIL

17 2 TDNAFIRNAZREARYIL. VAIVIEICRISPR 24546, iME
H A N [FIDNALE & F1 5L K 40 w407 14 1) L Ath 28 22 ) CRISPR R 43¢,
FEIRCVFITVAICRISPR/Cas 2 5% o X 26CRISPR £ 45 75 3 {4, - 248
L, B F 2 #pCasiE H 5 crRNATE B E &%), N5 5 DNaselE M o
IIE!CRISPR-Cas £ 45 [FIi B R Nase FIR NAEE Y DNaselE P o

i RSB R AN E YR B R (LI CRISPR-Cas 2 58, 7] BE
SRMFEIFHERAGEE T H . filin, EHrsRS, 375 M/
CasO[FJEW TS ERN LI T 58 B BB EKE Cas9 (SaCas9) [FJFY,
HACR AR 7] 5% R ke EK B Cas9 (SpCas9) A, {EAFH
NG %, N T s S aseR™ .

CastZFREGHY & H i TR At S & 1%, AT AFFEDNA
B RNATIE], T2 MK T fr B DNALE & 68 1 B L FET- 1 Cas9
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(dCas9) Z5fk, K& AMBHIFENERAME @ XEAROHE
VAIEE R A PRCRF R RA A S ERNAFSEA (E3) (s
Z726) o BT, CasEEH BB TS, LUFES HIrCEITEAZ]
GBI ZE ™ BT E R A8 2l 1R B A K s TR

a) RRACE d) DNAZTiIZ

b) HRIDG e RNAEER

PAMmer
5

©) RIEEIRIS

B3 : CRISPR-Casft & B 443 Z5M 69 B 1A

(a) #itdCas95VP16/VP64 K P65 i LM JmF 4 FETF (TA) t97k4, T CRIS-
PR-CasO# /b 445 SR8 TR ET, A BEERFORZIAERTLABLFHT
NAFAE &L, (b) CRISPR-Cas9TifiddCas9 5KRABASIDH # %44 BF (TR)
HEOHLAEEEFREZIHHE T, ARREANEATK, Ay EFEFHER
WHEFRITLEAAAFHETUAAFT AR LAY, (c) CRISPR-Cas9 i itdCas9 L
DNAF %48 (JrDNMT3A), DNAL P BB G LBMLE/M LB A B M kb, #
WA EHF A RLEEEHE T, () dCas9hs K AER KR k& E (IeGFP) #@ks
ZIADNAL LM, () BBPAMA 569 s F A F8R IS, TiliddfdCaseld s R AHK
hRERKXEE (weGFP) mbst#FA#TAMKR (BHH118),
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it 22 i 5 @A 58 T2 1) Cas9Bl Cas1 2afil & 1M A & B, T T~ — AU A Sw iR
o IR FH 55 B 2 A DR & O 00 T B R 0 A o X BT b 2 H o
THRREIER T 2 AL 5 EE ST, - H T CRISPR-Cas RS 1E
Z MR R BRER RN

CRISPR-Cas A S A R LA T — 58 BRI 7T A, B0 TR
S FNFRAL AT LU 2 K 4H Gm B R B 287 42 fUCRISPR-Cas R 4, LA
IR T RS BOX B R G AT 2P 2R R R B 2. G835 715X
st R TGE, TTTEF AE F CasOS IR R i) iz A T 2RI AR - 1£
B TORIES 4, 3T E s M BCRISPR-Cas9 2 5%, Mg iF £t
& A T E A CRISPR-Cas 255

gRNA % 3 K %%

CRISPR-Cas9 gRNAF & —20-ntfy45 7 crRNASR 4] 751 (B
X F), HAGE—"1T6-ntt EFIF5], LEFTFIEE—1TFAY
Cas95 gRNAJFFIHH T /EF 3 2R tracrRNA . Cas9-gRNAK & 41454
HANERA, H45E ScrRNA/HE X FF B H#EH—13-PAM
FIAL . — B2 &Y 5DNALE &, Cas9ulh & K i b fEPAMA &5 L i
3~4 bpis 57 & —1"DSB, JaiE4E R G IDNABE EZIRE

FH T 5= R 5] U gRNAJF 51 7] LL FHCRISPOR®” . E-CRISPR ©"
COSMID™ % 1£ 4 T Bi&%iT . 13X 88 T B 0] LR B A\ Y H PR R AT 51
T RIBIERIgRNA B RT3 GEF 94T B An6r & FE30-50 bpH ),
HIRLE T eRNAMITIN “H#E” JEMEFITEE B EHEmER (I
CUBTHRE” —T R “CRISPR-Caspy i B s ™ /NT ) o BRI L
T BAET B AR X B 3T A4 S RS 1 78 ) e RNAEATHE P I 3R
F, {250 gRNAF T30 MM, DU HA R, RNFA T E
SC“BE” gRNAFFIRIZE T A RS . BT REMERBURT
PIE B RAF IR, RIILR T4 % EegRNAE M) EI AL B, FF
B M g LE AR U (A= A RS HRARE ) o
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CRISPR-Cast) R & fnift & A 4

CRISPR AL ] LUl JLFF AR 5 IR FE SR P 3k, B3tk
B R EAR RIMEE R AUmRNATY 5 gRNATISE A K4k = H
(M EZER (RNP) E4614) (K1) URGEZERHA, 7L
BUBIDNAEL #EEDNAZE I EZ TR (ssODNEKssDNA) AL IR
HEAEADNAR, H 5 CRISPR-Cas 5 [FIRT a7 LUEDNAFE 25k
EERARSEE (WIRRE) TSI, 3 F SRR E R R E gt
BRI + ssODNEYR/INE H #£50-200 ntZ [7], BTN S/
A2 R H AL, T HIssDNAS L /] | T AL T2 (kb), AAV
AT AT KR4 kbR E R B0

MR 18 £ FICRISPR-Cas9Z 38 R 458, A M £ >R IFIR1T 52 B Y
gRNAs (F1). HEHAET FURRIFRIARS, AT ZETRFerRNA/H]H [X 7
31 50 B B Cas9 34 T b I IgRNAE T 7 51 9575, (5l anf# FAPX 330
RIIFRL" o 1X 2 ORI ALRIA CasOF — > AT FERIFRIT, filan
TUERMAMESIOLER, DR RAENE S BT RN S8
sgRNARIASN, RIMESE (IVT) sgRNAR] L5 Cas mRNABLLE (L
fCas9E H— Bt T4 Mi# L. )5, LA AgRNA (rRNA

RIKFHL = RIMER (IVT) =
iy gRNA+Cas9 mRNA  [SeE aNCaliY
- BT BEERE AR

Casd mRNA
- BRABATE T
- gRNA/Cas9ZE A5t R/ENiEH + — E;;gfﬁffﬂﬂ
IR - BRI
- RIABES A, 1EANARERALEL
i - HBZEE (RNP) S
| B ‘ - fF%4 (FDNA)
(40 Lentivirus, AAv) 5 ;;}g%ﬁEk%,ﬁmg@ig PN ARE ﬂ;:ﬁﬁ

- (—RIEER)

%41 : CRISPR-Cas9#=gRNA & ik fo B 2 4649 1A,
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FitractrRNA, BisgRNA) ] 54fi{k[1Cas9%E H 85K, R EH
(RNP) H A& XA I gRNAGFT LB 7] LUR S dR R, 53X
AT BE A2 FH T PN R A A7

TE 1 CRISPR-CasOZH {2 An{AT SRIA Y, mRiEe B R 4H Jmi i i K
iz — T HHIBMpERZ . HE 28 ZFREMIERERN %
A RT3 6 X B 1 o FRLEE LA 23R Yy B f i F . % ECRISPR
R T ARSI AR 3 715 o aX ST AR O M AR SRR B, FF
HLF K 2 50T A M Fn A 2 A 2 (R 4B R BB A0 FE IR IR SRR AN R
iz B, W BV R R R E R SR E RN, BT LR
2 B R BT 4R E T 20 BURS o B AT TR LA 5K 1% 126 CRISPR -Cas £
B B sl A A A R R FRE T B A U . TETR BRI A TRECE Y
HARSERS Y, FIANTE R T FF & 5 2 K sh ) o A AT A P R 4R R B A o,
I E R SRS CasIsiRNPE & A mRNA, K] B EIH
FRABAE A, 5800 Cas9FIsgRNARE SR, M 17 4 i 308 3 5 1 56 R 4H S i

ETREES AT 5% ECRISPR A ST A @ L i = E A
B, R 4R B R S AN AR ) N FR 4 T 3R KR B R AH el T H o X
FEIBVEAE T, Cast HIBH KRR R gD + =i B SRl &
FEIX — 7 VE RN KB, (EE N AETE BE RIS JR A3 CRISPRAY R #5 Al
gRNAMEE R B HIR . 7 R BN Y & S g0 A o, 5 —FhCas9
B 3E T AR AT S 0 CasOR B R S N BRI i A S R 4H o ZER4H SR
R H AR 1, tIsgRNAFIDNAE B B, HxFE/ N5 %, 7L
HRETERET, AR EE, DUE SR % 22 Cas9F A 4 f
Ho
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CRISPR-Casti RTEIBFRIAZR FHIN F

HERNBGREC LRI HNY A T2 MR T 2 RN EZE
Yy H R H G R T SO G0 A T K AR AL, X LA 5 T 5 SRR
JeRE, TR 2 RS RY, AT AN AR A M SR A, T B AR
AN E A PRI A5 o SR, T~ 20BN S AC AN B 2 R AH S B ) R
BELES7£ T-CRISPR A G4t oy 0% A 1 0K U5 T O Bl e b [ 1 R 4
B o AR T RAVETT A, JATRF B o B O R VB B 41 R A 5K
DLRRCR g R AR, IR RO 50, 38 CRISPR-Cas
ARG AR A T AR RS 0038 R AIRLEE, Rl TR
PN IR T BITF K

# FCRISPR-Cast#y T — R & 7 24

CRISPR-Casti R4 AR 2 — &' 75 BRI T4 A
(ES) fi5 5 Z 88 T-4HH (iPSCs ) FTE NI £ BE T-4HHI (PSCs) AR o
PSCs 2 A i1 o b B R AT R AU RE 7, (FTIF % A\ S REfS 8
T A T Y R R AR A A AR R G ERE Bh o BT AT AR
NS AR IR, BS 2T 4 (iPSC) BIRLEILHET
12 o SR, IPSCHHAE Z 2 I8 fA) 75 55 25 5714 25 1) A 3 S 20 i 9 256 [RI B
REFN/SUBAE RO FR B R T BRI, X2 & MERE TR
PR EL . 5 [RI4H 90 5 mT LB 7 A4 AE B I3 RAALS AN (HE 7B A8
[F) 388 1% 15 55 P [ 22 R e e of b f i — R R ) /Bl = R 57 &
G5 Al LUK R 2 RIPSCs by 2 Fh 4R B 2K 8, AT 288 37 38 K A IR MR
A

i1 B CRISPRAN T A B AR ABLE &, 51 A B IE B A B TE SR
PERGELRIZEEE, W] LU A B AR AU AN S8 AR RUAH B A R 1T EL BOR LI AT
RE P R K] A S Ko A 7 A 5 SR B BN o X B VEVEBR T E ok B AR
RAIPSCEESCAIiE R H E B0 (5 B B2 75 B ERER £,
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FEE R T BRI R o

APSCs It Hoid I T Fo iR IR BGIR 40 A 28 2wl 40 2 o o A 7 3
e, AR O MV R o 425 (R 2 G SR A\ T2 B AE 1R S0 B il
S Z AR A AR R IR ERSMEZ, 1O
BFREMAMPAEE, OFEHETY . B EAMRY | oA
FI/INBE AR o 33X 20 NS4 A BE 50\ G Y05 S8 5 B 7 o A 5 2
WA, LUk R RZ BRSBTS RERRR T BRI
H (FEILSRIMA3 ) o 22 2H S A APSCHTAE AN th ] LLE S il &
ORI B T4 [ 294 e 1 & R A IR FERITRIT 7%

BT 4t R R 4L, CRISPRIGEAIT4HAAT S — 1 EE
R & TR EB =4 (3D) REFEREITFRG. RBREE—
PR HELER, B F B S B REHR T AR, Fo oy Z AL R R
PR SRR, RIS H P AR A a8 Bz M HR . KasE w L
HIRT BT 408 (ASCs) BRE M4 LRIPSCs, FRERLILH AT USR
i BRI EE o X LR S RAR B O — A TR IR H AR
B2 A B SR HIRE IR R AL, BRI TR THRWHEY.

B—REM N "RRTET BWRFJESINER, EHHZLT. £
TR ST BB AN EME AN AL B, X Lo ATty T N R R & B RIHRFIE
G R, MR AR E /N LEEAE 5 £ K CDKSRAP2
AR PR B A R A, A0 FE Cdk Srap2 2L (R BRI B R B J
B JLA FRBEARRAE o il () — TR CRISPR & [ 40 S B 45 AR 2 88
B BORLE & B TAEGEHT I B RESAE 7 ML A P SRR &2 B 1
RE T, Ho 515 R AE NIPSCHT A B R4 B RFRPTENEE A, M1 5
BEERRE T KRR IR & B o — IR TIEFI
ok B 225 K 4H 9 B AIPS CHI A 2 10 Kb SR A% B 76 SDEASE A #2375t
FRHHIRE T A AR ALY . CRISPR-Casi i 3[R/ 5 K A0 VB FS 5
TR R AR E P RIME & 4, T AT DIAE3D AR AFoxt iR B & 4
AT RAMNEE -
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BT KM, CRISPR. TAHAFIRER EHRMILE & E LN A T HAth
W ERREREE Lo BRI E SRR T APSCHT A& B GSK 3B # 3 K7 /N
RY, fE% % ¥, CRISPRA S £ 315 5 2 [ PK D1 5 PK D2 1)
brul i S B R EIS/INE PR, NTTE RS B i iR £
BRI AR R R R Y o Folr, [Rl— R EIZH IE B CRISPR %% 48
FIPSCH VRS K25 B 7T LU T 2 e £ R0 o MA@y T —5%
B WAL =5 BRI e NE 8, H TTEMILEES
BT EIE R E - XFEIBEN RS WAL AR HE 221
RBRME T — M EF BRI TS

BifAT4iE (ASC) tha] DL CRISPR-Cas &G 17 4w, HAT
ERRERE o HA— Ml 2 H CRISPR-CasOf [F #E 1A 4EAL B35 1)
TR E FHIRERMCFTRER o ZBATASCHT 4 K25 B 1 H
A LE B dH AR P AR S 4B A AR B AR A O o BT sRIEARAR
S R AR A etk B 3 R G BT i RaE Y, X PR g DL LR L
AT A RS 37 170 18] 44 o X 26 32 {3 25 (R 4H SR AT B 5 7 SO T B
YRR FE AN EE SF AN T RE, WIS B D RERR IS A  A R B & F
BHET—MREFPI RS

{5 FHCRISPR-Cas 5 % B2 1% A X 25 5 % A\ 28 48 {fg o 17 32 [
1B, TR KIS T R 4 B o 45 &3 B RO 37 5 15, 5 (g
FI L RGN BR B HR, FATINTE A B8 71 72 1 3 A 85 57 1L+ 1 VE 58
KOs SEHMERPNRERER, Dt —28 T #IEH & 5 EK
IR o

CRISPR-Cas# K& 77 ¥ 49 5 A

CRISPR-CasZ: [ 2H 4 4 45 AR B F F 00 AR A6, 38 7] F T K
PSCal £ e R AAE, anbe iz dpsias i T1H408 (HSPC) fES KR
B, llE RAE A VAT R AL B AR IO SRR o BLEh 4R R IA T T BT
PR T R R SO, (FH BB H FIEHE, ¥R E 658 7 804 1IE 5
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TRSRAR, [ 5 KX LEAH B B SRR N o X BE TR 2R 1 2 TEEC AT LA,
H o FAHa 1 75 T Bk LA K VB T G0 0% & E 1T 37 £ B % « CRIS-
PR-Cas ] LATEAEHA O 5 586 A BLHE DLVR YT 2L R, SoiR TR S8 AREL
AT A BEB IR L R 22 PR o tb4b, {3 FHCRISPR-Casif 173 [KI2H
YRR AT ATEYR YT HH &AL S AN At (5 RIS AT G e, AR 1k S HE R,
X — SR IEE RGN N —RARIaTT RO A .

16 A4 B 48, CRISPRECA G A I st N H 2 — &7 4 7
FER AR AHMEIR (HLA) AIEE R APSCH TAHAEIRTT - 128
HLAE R £ 5 1% 5 B0 18 rIPSCIR 48 i 75 7 2 R 52 (R o B HEFR 5%
5o TERIT A — 3RS, —MNAAVA T F HICRISPR-Casi# i% R 4%
BRI — N 2 SR THLA-EEF AT B 283k EH (B2M)
FHEPURER AL SH . Z9REAHLA-E-B2ME & & H # A4 AT DLk
RS AN B ARG (NK) AR/ S HI34R, W EN ARGt T
VR O IE A B AR JH B RIR o

SR, AR B R R AE T R Z B 240, FAEANN
WIEEE AR, TR, BIEEME, DU SNEDNAF/E AL B
FIgRNABUR . BB 2 ¥ CRISPR-Cas9:: (K 4H a8 K F T8 FI % &
B el SR RIE RO R AR R A, (BRSO R o Bl JE RO 55 & B,
FeRAE R GBI AR B R BRI INEZER, T S B S
FNYREECRFEARC™ o BT, F FARNPE & A B ER 140 i Y L 5%
FLIE 2 AR 5 EBUS TARIFRIRER S, sk, RIS R A A H
PRIGTE M 15 e PR R B A RO PRAR M o R, FEiX SE 4 i R R
PREERRENREEFEEN . N T X EE M, AMTEEHR
T &M, OIER RSSO R SR RE, DUk AR IR
iACRISPR-Cas A 5 BT 5 SR LUEE % 50 B0 -

R LA A TR 2K (CAR) -THfETF & — Mk B s
IR IRTT 7715« CAR-THHAE 2 4553 2 R R P BRI 4L, %171
st FORBE A AR LR ARAL . H AT, AT LU AR BRI E R
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THECARSATHEERFMAY . RARESEAMIEAEIERA+ S
2| % Wt 4 M, {ECRISPR-Cas 2 45 BEMS 70 kS i 00 3L (R 40 o7 B 3
FTCAREE A B TRAC. B2 MF1PD-15:[F ) % 5 5 K 4H 4758 DU T
TE SR /N VB B 7 A B e SR PR AR B RE AT # H #4: PD-1
EEE R HIRBR T o 13X — SRR fo0r 38 i B 2 2 (R 4 8 ) O K
ssDNA AR FCAREEA T EUF Y, BT LSS A b il 2 [
F/E A 1E BOm M 2 20 SR i B B ARV T I R R A R B A
CRISPR-CasFICAR-T3 i 11 & i 14 4% AR A P[] VB Y LE 78 03 8
TR & B, FRTRE NIEEAE VA TT $ it — IR S e SR M AN e 7 A 4
SRR

Folt A — 00 57 B~ T CRISPR-Cas9 R G £ EIEHE H'™, &
TE 7 A N T2 A9 A 388 1 4 222 5 4E A CR IS PR i K] it B4 7 106 1R 51 40 2 400
B Zh BRI T R T o T IEHIR R “Cas9E H L FFLAY [ S RNA
(sgRNA) 18R EL” (SLICE), B T R TA TS (LA RS MR
AR S o X R AR M T — MR & EA BT, iR
T CRISPR-Cas# AR 2 U A 5 BY ff i e fli i A6 4 2 1) R, T AR K A2
BEARSRAPIRIT I & 2

B T TZHM TF2 2 #h, CRISPR-Casiy )5 — 14 AL HITATT
HH 2 ATk A HSPCHY B8 (A [RI 40 S i, EL 9 F 9097 IR R 50T Bk
AN AT 28 FI9% » 140, MandalZs A& k4 7 56 T CRISPR-Cas9
FECD 34" HSPCH R A, At i 30 0t A B gRNABE 1] 75 V4 A I
JRAERFEEE (CCRS). BEEHIRIRFEMA, [ A3 TRNPHIFRIA RG]
DA AR HSPCRIAM AL E M AN IR R o R 7

2 IRHSPCHY 2 R si b AT B4, (HHSPCHKIHIE I +4HAf (LTH-
SC) KT 4N AERE B R HARHDR ST 2 F1 22 18 /Y 41 B B #3507 . 53X 2
LUVATT 7 H RIHSPCHE A Jn e i — 1 E E RS h T 7 iRaxX —BR
Porteusiff 50240 — BB T I BGH R R AR 715, F IR REF74
P LLEFHSPCRE B A K LASE IR R R B T HDR AR A S G > o
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XTI T & R R A TR R, DU RHET A A
BRSP4, LLRf# F AAVOE 272 E DNA BRI o 75— 55,
— M EFETAAVORI B B R A T4 E B-4LEH (HBB) X
BRI B A B 77 L Glu6ValzE 257 | @it 48 A GFPHR 4 48 1,
VE# 65 B Th L & S HDR YR BB AU 40 i . 8 E Y2, 0[5 HBBE: K M)
HSPCTE A S/ N P SR B H KIAR £ R EH . AAVOLLIMAH A it
ADNARHT, 75K ssDNAE;HssODN, 7FHSPCY 4 b4 iF B 7]
BefA H . B RssODNsEEAEHSPCH NS &R HDR ™, (B EATHY
KERE URE—MEFmE &, FHAERF Lk E €75 K10,
B A — T 57 & P R 40 2 (i 2 — PR BT A p 53R P DNA T
L, F HAAV6 (TiEssODN) FIFL R S A DR T X R s v o
XN F4EHE T pS3KHi M DNATR (5 [ B, 5 #5868 1 B R A Th B
A 5, TP AT DU B B pS 33 R FE AR o

7£ - CRISPR-Cas% i 2 58 i F Il PR A & 40 B 44 7 T8 2 42 B
BT ERER. EEZE. BARAETHERARE TSR
T AW & s FATHRE X —HORTE AR LE R 2 pl T %
L2 m R A H .

ENIE A= LSRR g

RUEE R 2 2w B S A T Se A B R Ay T O Tl A T 2k
J&, (BAETE o0 R IX 2 T R AEORATE N Z 5, B V2 KRIERR Z iR -
BN ORI E TR R CRISPR S2 4G (Al — L6 5075, BB R
RETPEEL, /MEETT AR LB TT i

REAZAN AR BT

LR G Y T2 A R RCR = AL S [ AUDNAEL, filanqE
LR IR RIS R B 0 HURY T TIUT SR A AR » R2Me
FAGRELMRNEFZERE, BFEgRNARCE. AR R KEHINHE]
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SHDREZERRER (CF "EHERARESORRE SR —7 it
FT0P18 ) AN AEYE S AN BERV AN B IR 5 A, DURAEAN R4 S8 B
FR] B8 AR TAER R [AICRISPRAEE A 8% R ST o

LR RCRISPRECES LAY (RIRE, & 5t 20 5 22 IR #E 17 oL B
A HRNARJBT M FS o %F T2 TNHEJA 2 KRR ds, AR s
gRNANGEA R 75 506 H AR R A9 GmE, NI 68 £ 1> egRNASTE
100~200 bpH PR & A HE [ 2 > E R H AL, DLER e 2 R BRI R %
X T HDRAKHR PN B 5 [ H G, BT HIsgRNAsWA 5 BEWS DI HI R
2GR R N HDNAF S, 10 AN 2 A8 AR B G B 2 (R 29
AR, NISIATIRRAS, DIBIME E R _ERJPAMEisgRNAF S .
It5h, DNABLHT 5 HDRES & F R BUR T H A EI L5 5 528 LAY
PR o ROZFAE EgRNAS| S HIDNART R B, LU= AR HI
A G o

CRISPRAFRVFEJRR, JEH 2 CasE B 1L H AR IR T i3
15, JUE T 2R A G LIRS o X CRISPR-CasH R fRI%E T
{ENAE B AR R B ARG R AT HAT R, DL Je Sk R s (7
% (Z M "CRISPR-CasOfy A B L ARG —77 ). ARRAHIAE
R 7 TR (FACS) WYifmR s SR IR, FF
ZRGIN B AR AR A R 5T AE R AR, BIE AL FACSHY ] 72 5K,
DA IE S R SRS HOBURME A A R

N T R ARG 5 TR 4 G B R s R TR 0 B SR O e S MR AT R
P U SE R 5 R 1) S0 2 BTt AT AT (8 4L « — bl F IPCR
B[R] 7 P RS e T T 5 [ WD oRAT AR BN (200~500 bp) HIDNA
Fr B, X8 B BT A O S A AR S R R B R F
2 0E (E4A) . B R R ADNAR T EGH 5P RY
#F (>1kb), H N MEFHADNARY K Fr B PCRAHE AN 5%
i, FIRESEURIATESS R » it F A gwiE 5| AR AR, — Ml e
FL TR 93 R SR 2 SO BEAR AR LU A\ T A 28 28 VB AE IO HLAL TTTBR SR
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AL DAETIUHIRY R 28 1 BCEL B3 5 |\ B IR FR A VR B S A o 5K
BT AT LA FH PR A T BE XS I G B AT BRI R G B AT AP AR RO RE X
PCRY =Y t47 2R 93 B o Oh THESE A B ARALA RN T BRI F
8, AT LI K B B PCRAN/ B R 7 22 s 2R A H AR B R (4 rh e 2
REAHFEE (K4B).

PRATHABRRBESRA LB I

AN FNHRAE T AT H AR RS, 4EFFAAE S5 TRie T HE
B KRS0 SEUE E & L B BERITE K o AN, FERIH GREEIR
FEXT RIS B R E 7T, H SRR S E AR L ), X — SRS
JEHV AT RBF N B3 . HTE A %R A0 T15 57 2 DNA
DSB, 7&K ZE AR, pS3MREIEDNAIR 5 2 BB 78 b i 72
WS, AT 75 S 40 B R A (5 i e A R A 72 o 7 APSC 7V FIHSPCY
HERE MR TiX—I % o ANTXT xS 2 B H g A0 N T fif £
by BB e AT B2 2 A0 iR A G A AR ) 5% SRR 14 7 AR R TET AN 2
M, AIAFTE SEFEEE T LB RE R T UFThEE o (Rt TER N AH IR 2 5
T USRI 5 F 2 R A B R R X S T T A AT IR AR EE 2 (YRR
B AN Gm 58 5 PR FF 55 1 ] DLRF SR8 80 v A8 P B /M, AT SZH5 A i 2L
B 75 DIREANIE 1 R EE 4R AR

Brp534h, HE AR T B B T BEAE R 5 PR ] APSCHUAF
T o BlTn, FLUAT R ABCL-XLIE #£A K KR & T mEseE™ . x—
R+ EE, KAKIREFE APSCs5 k1585 (& 2 FAH%, G BT
FAPEpS35€35 7 H120q11.21 (& BCL-XLEERF AR E AKX ) s,
NT R A Z AR RIS, 1R KRG SR AR A R 4 SR
Ja > 3 APSCH: R HFEE AT R E a2 N B Y o

CRISPRSESS 7E 35 57 4 M o 1Y) 5 — N BRAR, J& 1E B R 4H Y S 2K
AR R AN TERE ) T R B T T A R EAE R . HT4F
TR EHIRCR NARIEE100%, RiEE 2152 KRR 0 MR
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A. E#PCR
REERIY
haoEEY] —->
—>
—I—
|| L]

S S

RE34
B. KA EPCR

HEY — oMl —

@
S

=

Y
EHER ARER
— —>
REH — 2H -
AFR FHER
-« -

B4 . BIE AR ASE RS G E RS UKok,

(A) ¥#MPCRAASA, MgRNAL A EHM 5| Hxtde K #4753, T7R WwEIXSur-
veyori BB B T 5 S F BT B RIRAE BT A ARINDEL# bedl, Brin Bl sk, sFF R B &N,
TRABI R RERFRINBEART B EEGFELER,

(B) AKAHPCREFERSE, sFFKAFEKNHN, TRAL WL HF R KR#TE
B4R, XilHh53ded RBRE s, BALRBARFFIARGEE (K% A119),
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FESXFREOL T, FATTR] DU o B 340, I DUE & R A 3 b
MBS R RN S — iR . (B2, WHTEDGER T 5 T Erdn
BERA . IEACSR BRI AN G RYBE IR 25 1 A] DURE SR Y ] 22 P /MK,
Tt A B R B T I BERNTE D R GR AT AR -

CRISPR-Cas# K # BL.3e & R

F (R 40 G v] BB 75 5 I B RRURE , 0 S8 3007 B AT DA 1, AT LUK
T 3, 038 S S0 5 /e DNAT S v (40 B ST Rt ), AR
RI2H A BT A7 B AU 2828 o Cas9RENMY 52 gRNA-DNAJF 51| 1~1-2 bpHY
R o BFST 4 PR, & eRNARIJ [, PAM-iT i ESBL AT 32 AR T
PAM-TE B 55 AR5 o K £ #egRNA R T T B 75 % 6 & B 5 51| 09 P8 7F
gRNAsHEFIN B TiX— i, HEZEE, (I A S 2 R A
3T SRV VA ) 3 270 A0 ) Fd S A5 N DA T i R 6 R 4E G B O R
P o AR 271 A R R RS B R R A, T X A R RS B RT B X 4
FAYE I AN ThBE = A2 67 T S0 o

TEIE 40 20 B R A e i AR A e R b, PCRYT 3 H PR R4 AL
FHiFEITDNANF, A TIIE R A dm i (iGN e &
BRI A ) BOMERAYE o o T HEPR L K 4 8 40 i 1 CRISPR-Cas5 | EE AU i
BB AR A, % gRNAR TR 2 T ) 7 78 B ¥0 A7 5 i PCRYT™ 58 il
J7 2 R A i SR A A R S B %7 1% B A28 A 2 B R A ok
SV Y B BB S8 AR A BE R 48 HLTCIm AT D7 3%, B3R 7 1A T Il 42
ERANEERTH LS (GUIDE-seq) . m=iE &2 KA 5 il F
(HTGTS) ®. BEFEAWHERD, ERERME EEEM T —Am
FF (BLESS) “"SfiRBIWEEWT 3 . B Al BEA0IE, BN 2
DRI 8L 1) 2 6 o A ol 22 ST T, DU — P RE o B T 7EDNAJK
AT EE SRS, I TN G 56 UE 2 DR G ) 2 TSR 1 Y
FR R 5 TR R B AR TCRD
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CRISPREIARKRFKRI A B

ERIELRE

CRISPR-Cas5: [KI 2H Js 4 1 i S8 450N — B A2 Al R0 % 10 F 9 A
WA 0 3 ZE R AN SO 77 1] JERR 7 EDNAY)E ZRNAS | 5 5§47
AT EARIFIDNAF FIAE BAE P45 3R o X Fh 5 JEEEDNARIAE A
YE R 218 T Cas9ORHNH. RuvCFIPAMAH B {F 35 2 [A] Y Fe ok
FRER™

h TR T E RSN A ACRISPR T EAIRCE. R 71 A0
e, MR A CEEE N E RS EE R TR £ THRE
PR LA T S TR TT & T 30 M BB (L A CasZE 5§
o XA FE—FE R EE Cas9E H (SpCas9-HF1), B EH LT LR
2 B SR G 5, DLR—Fh “HESRAUEE " SpCas9 (eSpCas9)
AR, B T IR, IR AR EY . Doudnalf AN,
B RSN X T B CasO AR (AR F7E iy 22 DRI B [ YEERF PR AL AR T 3 %
EERMPIRN R LT —Fhim g E Cas9Z8 & (HypaCas9), BEFENE
W VR AT R N B B A & R FARE RS . B AR TREHME
1T 5EPAMP R 4, (B8 3 A Cas9%m B 2 (R4 iU BE 1 (R T8
%5 -NGG-3'f] X 15 Kleineverss A\ i@ 1t [ #3775 25 CasO I PAM-1H
B AEREL iRA] T PAME: 744 M L B Y PAMF 71 48 715’ -NGA-3’. 5°-
NGAG-3'H5-NGCG-3' B 542 &, T+ 5 T CasOny ¥ (7] yo. o 18
o — PR T Bk R S A B R TR TV, AR AR R T —
FHNS-NGG-3"21]5°-YG-3 1 BR il 14 35 A% 19 25 R 1380 XI5 96 BA 7 22 1K
B Cas9 (FnCas9) Y. £, LivifEiAHi%it 7 —Fh4H “xCas9” HY
Cas9Ze ik, HEFEEREN, IHZS &2 FIPAMIERM o 2540
O IE B R F T ok B H A B Cas12a i Cas9%E (1Y, FHH X &L
J7HER] LA R — R 5| B A B R P BEAY Caslif o

EZENEREREEMY AR RSB E MR, R AR
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HDRK i B G SR R H T E RIS A I T % IRHDRAY
AR, — Lo L {8 /)N 4 100 ) 70 A0/ 0 751 S8 12 s HD R A 417
HINHEJ®', ok [7] 4 4 g A #8"™ o &ar, it RDNA#L AR FICRIS-
PR-CasH 14 HI4) BLFE A TR HDR & A SRR i1, M7 866 7 /]
BE S ZIYIRAEAE SR BRI o RIS, AR S E R e 2 A
PR YRR B A F R HDR YR IS ME A A A0 o Bl — TR 5%
TEHSPCH K A T 3X P ok mg, #5935 3 A 2 TRNPAHJCRISPR-Cas9
BRI, R FHAAVeE 2t RDNAMLR L & GFPIR 5 2 K0 . 3 it
XFT %, KRR O AR FT LLGE A 28 RIS (FACS) #1785
& EAPSCHHR A T U SRR I TR R R AR

— L6 A& ) CRISPR T B2 A AN ) B2 K ZHDNARYE L T
VRN L, MR NARSE M A9 Cas 1388 (4" F1 3 LU 2 g 5
W%, 1ERNERA G AERIGTT N A FNEE 5 T AR

RAEE RN HGmE T RRE TERERE, SRSz —2 M
Thh e B ARA0 M s AH AR s s ik MR A G R L. AN EBBE L B A
PhiE, A A 20 B AORE A0 U 1 CasORYFSE (AL AI 7 X 1551
B RIRT AR IR BB ER E R EE .

BIR ARG ANGET E M T EE AR ERI N A . i, BEELE
PR RSN BT B — B AR B R 3R 0T iE, (B E ARG THERN
ERIRIX L - AAVERTE (RSN N EUE T Reh, (HIH B R A
AR PR AR RS T H I A R o 52 8 T B RERS LU Ry 5 1 AN
SR EE A B PRI 2R E R . Bl RNPS A R AR 2 B R
T 32 PR ZE & BA — R RYET R, TR T RIS Je b sk A mT BRI
BIRX T 15T W] e S IUAE (R U BE 1 o iR R R AR w2, H T
HIHI LR R RS & AW RV R IE R o

ULEER, FHAELRYCasOE H 5 ML R EE BHIgRNASE 5155
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FIRNPE & K132 T2 B H - RNPE & 4 AF FTGE, REFEE, If
HAEDNA o X ERHEREAR T B LR XS, 15 Cas9s - FHIIRRE
SR TURIDNA R BEHLEE &Y o K38 BT 15 S 1 Cas9 R T2 FR
Cas9Z #& T H bRtk K ZH 59 75 — MR G o 1% 77 15 #0 — D] 2 Rf Cas9
WA TETE R A B TR A B HEE X5 D A BUA i A A
BEIE R Cas9E (1Yo B ALK, T 5 EHImEACRIS-
PR-Cas 2 G HYIT At R AR, H RIHFFT A 51 R3S i 52 e 25 R 4H G
R AR R MRY KB AR M BIVEE « FEARKIJLER, B
RS R 22 R H e 77 20 ALY 07 V4 DUR SR D 2L R H s T R,
RERA B TIX —S AIRA I BR W LR = e mlmRR A, B E .

)3

H 201344 H LLR, CRISPRE [KIZH %5 45 K LA £ oy sUHe s T
TR AW R0 A W EE 2 B9 « CRISPREL A AF 15 Fo A1 AT LA gmiE- 4T fo AN
A R P A S B TR T A 5 1 Y, 7EHSPCEI T4 A 55 R X
R AT B R R R A RRA YT, TR R RTIE 5 T
HRN B ER o X2 R AR X —#45R v BESE B /MR 43
MAEF 7 ZEEE T Z 80, RN RE L R B . RE
AR, XIS 7EF K B R F AICRISPR-Cas R4t ) & 2 28 A= i
RESEI &R TAEANINIFF1G, 455 JTLFE N TR B B i A8
B

bt & CRISPRELA AN #k 45 AR 3, 3 FHE AR A T 4R LR
AR TR A, AT B H B EH NG X S ERAME TR
FIN T2 B 2 R AH G AR 0SS (R 3R AE . T 25N AR 4H B Y
RN EERTTIE B KA o DUARYHH A BEAR 5 R AH JR 8 7 B 25 K
R, XRIU IR RVATTROER . TS — 5, LA FEARAD SRR
AR Z i RAKYE ORI 32 88 R BR 0 175 128 8 AT 35 A 70 3 R 2 20 IR
FIFRREEE L), T HAS AT G i 2 S BUE 1% MR B A= i 3 18] B B 40
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g R HE R R o RS, IXEBRCRE G LR AR AT, AN
RERE . H AT TCIETE SRR, NaEd Rl (REAER
IREASE R o
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