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Introduction
Until recently, scientists have been limited in the number 
of fluorochromes they can analyze per sample on their 
conventional flow cytometer, due in part to the availability 
of spectrally resolvable dyes and the detection limits of 
the hardware. Over the past several decades, there have 
been significant advances in available reagents and dye 
chemistry, with hardware sticking to the same paradigm of 
designating one primary detector per color. With spectral 
flow cytometry, the entire emission spectrum of the dye can 
now be measured and analyzed, allowing for both improved 
resolution of markers and higher dimensional experiments.

In this collection, we present a series of research articles 
detailing applications and innovative approaches enabled 
by spectral flow cytometry. Deep immunophenotying can be 
done using both conventional and spectral flow cytometry. 
In Niewold et al (2020), they directly compare conventional 
and spectral flow cytometry using a series of benchmark 
tests for different signal attributes, signal analysis methods, 
and application to complex panels and different sample 
types. Their analytic comparison found that the spectral 
approaches displayed clear advantages in detection and 
analysis over conventional flow cytometry approaches. 
Similarly, Soh et al (2022) take advantage of the increased 
resolution afforded by spectral flow cytometry to address 
therapeutic outcomes in acute myeloid leukemia (AML). 
Determining the effectiveness of therapeutic intervention 
in AML through the identification of residual myeloid 
leukemic cells has become a key prognostic indicator for 
hematological diseases but presents several challenges. 
The group evaluates a 27-marker panel for the detection 
of residual leukemic cells after treatment for AML utilizing 
spectral flow cytometry, obtaining the ability to distinguish 
cells in a normally heterogenous population consistently.

With the ability to resolve the full spectrum of a fluorochrome 
even ones with similar peak emission, spectral flow 
cytometry has empowered novel applications. For example, 
one means for identifying multiple samples at the same 

time is to employ a system known as “barcoding”. In the 
case of peripheral blood mononuclear cells (PBMCs), using 
different antibodies to CD45 can be used for the barcode 
system. In Junker and Teixeira (2021), created a barcoding 
protocol that allows for simultaneous analysis of PBMCs 
from 20 individual donors and measure changes in a mode 
of action study in unfixed cells. More challenging cell 
populations can also be visualized in high-dimensional 
panels with spectral flow cytometry. For cell-based therapies, 
engraftment pools of hematopoietic stem cells (HSCs) can 
come from different sources such as bone marrow and 
cord blood that requires thorough characterization. A third 
but less accessible population is from fetal liver, which 
has been noted to display superior engraftment potential 
compared to the others. In order to characterize this cell 
population, Vanuytsel et al (2022) reports on a novel high-
dimensional panel to evaluate the engraftment potential 
of HSCs from fetal liver. Finally, cell-based reporter assays, 
such as Förster resonance energy transfer (FRET), are also 
unlocked thanks to spectral flow cytometry.  Henderson 
et al (2021) show that both conventional flow cytometry 
and spectral flow cytometry can be used with FRET-
based sensors for enzymatic activity of protein kinases, 
interrogating signal pathways and changes in cellular 
activity. They conclude that spectral flow cytometry 
allowed for real-time measurement of FRET with greater 
resolution compared to conventional flow cytometry.

In summary, this article collection will educate the reader 
as to recent innovations in the applications empowered 
by spectral flow cytometry, from measurements 
of cellular activity to the evaluation of therapeutic 
interventions. As new methodologies emerge that utilize 
the flexibility and capabilities of spectral flow cytometry 
are developed, researchers will be able to gain greater 
biological insights into cell biology and disease.

By Jeremy Petravicz, PhD, Senior Editor,  
Current Protocols
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Evaluating spectral cytometry for immune profiling in
viral disease

Paula Niewold,1† Thomas Myles Ashhurst,2† Adrian Lloyd Smith,2

Nicholas Jonathan Cole King1,2*

� Abstract
In conventional fluorescence cytometry, each fluorophore present in a panel is mea-
sured in a target detector, through the use of wide band-pass optical filters. In contrast,
spectral cytometry uses a large number of detectors with narrow band-pass filters to
measure a fluorophore’s signal across the spectrum, creating a more detailed fluores-
cent signature for each fluorophore. The spectral approach shows promise in adding
flexibility to panel design and improving the measurement of fluorescent signal. How-
ever, few comparisons between conventional and spectral systems have been reported
to date. We therefore sought to compare a modern conventional cytometry system
with a modern spectral system, and to assess the quality of resulting datasets from the
point of view of a flow cytometry user. Signal intensity, spread, and resolution were
compared between the systems. Subsequently, the different methods of separating fluo-
rophore signals were compared, where compensation mathematically separates multi-
ple overlapping fluorophores and unmixing relies on creating a detailed fluorescent
signature across the spectrum to separate the fluorophores. Within the spectral data
set, signal spread and resolution were comparable between compensation and
unmixing. However, for some highly overlapping fluorophores, unmixing resolved the
two fluorescence signals where compensation did not. Finally, data from mid- to large-
size panels were acquired and were found to have comparable resolution for many
fluorophores on both instruments, but reduced levels of spreading error on our spec-
tral system improved signal resolution for a number of fluorophores, compared with
our conventional system. Furthermore, autofluorescence extraction on the spectral sys-
tem allowed for greater population resolution in highly autofluorescent samples. Over-
all, the implementation of a spectral cytometry approach resulted in data that are
comparable to that generated on conventional systems, with a number of potential
advantages afforded by the larger number of detectors, and the integration of the spec-
tral unmixing approach. © 2020 International Society for Advancement of Cytometry

� Key terms
spectral cytometry; unmixing; compensation; high-dimensional; polychromatic; viral
encephalitis

INTRODUCTION

Fluorescence Cytometry and Spreading Error
Flow cytometry is a technique that utilizes the emission of multiple fluorescently
labeled antibodies excited by a laser to measure the simultaneous expression of vari-
ous proteins on single cells. The high sensitivity and high-throughput nature of this
technique, in conjunction with the increasing numbers of available fluorophore
labels, make it suitable for the characterization of many cell subsets under a wide
variety of conditions. In conventional cytometry, individual detectors (often photo-
multiplier tubes [PMTs]) are used to record the signal from specific target
fluorophores following excitation with a laser (Fig. 1A) via selective optical filters
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with wide band-pass properties, to maximize the amount of
light collected (Fig. 1B). As such, each detector is effectively
tailored to a particular fluorophore, restricting the range of
fluorophores that can be used on these systems, thus limiting
reagent flexibility. Many fluorophores that are used simulta-
neously may have overlapping emission spectra, leading to
spillover of one fluorophore into a nontarget detector
(Fig. 1C,D). However, the process of compensation can math-
ematically correct for the overlap of signal from a target fluo-
rophore into all other nontarget detectors (Fig. 1E) (1, 2).
Through the application of linear algebra, the spillover of
each fluorophore into all detectors is corrected such that each
detector effectively contains information for only a single dye.
This is achieved by multiplying the measured signal in each
detector by the inverse of a mixing matrix, scaled columns
wise to 1 (3). Errors or uncertainty in photon counting com-
plicates the correction of mixed signals resulting from spill-
over, as they are not described by a Gaussian distribution.
Thus, applying a linear correction to the nonlinear counted
photons results in an error in the distribution of the spillover
fluorophore signal in nontarget detectors. This is referred to
as spreading error (SE) (4). It manifests as an increased width
of the signal from a spillover fluorophore in a nontarget
detector after compensation, and the spread of this signal
increases as the fluorescence intensity of the spillover fluo-
rophore increases. Importantly, compensation does not intro-
duce this error, but rather the process of compensation
moves the signal distribution to the low end of a logarithmic
or bi-exponential/Logicle scale. As a result, this signal distri-
bution appears to expand. SE can complicate separating the
negative and positive populations that are being measured in
that detector. The construction of high-quality panels requires
careful panel design to reduce the intensity of signals that
have a large degree of SE, as not all fluorophores will exhibit
the same level of SE in all detectors. Recently, advances in
instrumentation and dye development have led to the devel-
opment of panels that can incorporate more than
25 fluorophores simultaneously across five or more excitation
lasers (5-7), with reports of 40-color panels beginning to
emerge.

Spectral Cytometry
An alternative approach to measuring multiple overlapping
fluorophores on single cells is through the use of spectral
cytometry. The use of spectral approaches for flow cytometry
was demonstrated as early as 2004 by Robinson et al. (8, 9),
resulting in a patent (10) and its subsequent licensing to Sony
for a commercial spectral flow cytometer (11). Since then, a
number of studies have demonstrated the utility of the spec-
tral approach in various flow cytometry experiments (11-16)
including the use of panels with more than 20 colors (16),
with 40 colors on a spectral system recently reported (17).
This technique aims to measure as much of the whole emis-
sion spectrum of a fluorophore as possible, across a large
number of detectors with narrow band-pass properties, rather
than the peak emission in a single detector with wide band-
pass properties. Additionally, differential excitation of

fluorophores by multiple lasers further increases the granular-
ity of this spectral signature. This design allows for the mea-
surement of any fluorophore that is sufficiently excited by the
lasers in use, avoiding the fluorophore-specific detector design
characteristic of conventional systems. The signals measured
across multiple detectors (Fig. 1F–I) create a detailed fluores-
cence “signature” for each fluorophore, allowing each of these
unique fluorescent signatures to be “unmixed” from one
another. Key to this approach is the use of a large number of
detectors on each laser line, more than are utilized in conven-
tional systems (Fig. 1J,K). This process potentially allows
fluorophores with similar emission properties, which would
normally be measured in the same detector on a conventional
system, to be measured simultaneously on a spectral system
and separated using conventional compensation approaches,
or through unmixing based on their differential spectral
signatures (Fig. 1L,M). In addition, using this approach, a
signature can be determined for cellular autofluorescence in
individual samples, allowing for the unmixing of
autofluorescence from affected channels, as well as the mea-
surement of autofluorescence as an additional feature. Taken
together, the large number of incorporated detectors, the
spectral unmixing approach, and the detailed signatures gen-
erated for each fluorophore enables the building of large and
flexible fluorescent panels that are capable of incorporating
highly overlapping dyes.

In conventional compensation, the correction of signal
measured in all nontarget detectors is achieved through the
inversion of a mixing matrix. In other fields, such as remote
sensing and spectral microscopy, various methods of spectral
unmixing are applied (18). The unmixing approach used in
the spectral system we tested deploys a least-squares linear
unmixing calculation. This approach assumes a linear contri-
bution of reference spectra to a mixed signal, where unmixing
is achieved through the application of matrix pseudo-inver-
sion. This approach is very similar to compensation (inver-
sion), where the number of columns and rows are the same,
where one fluorophore is assigned per detector, but in spec-
tral unmixing (pseudo-inversion), the number of detectors is
larger than the number of fluorophores, potentially making
the inversion more accurate. The object of this approach is to
deconstruct mixed fluorescent signals into separate compo-
nents (i.e., each individual fluorescent signal), so that the ori-
gin of a photon can be reassigned statistically to the source
fluorophore (13). This is not the only method of unmixing
available, and some approaches may be more suitable when
the individual reference spectra are not known. Various com-
parisons of these approaches have been made elsewhere
(13, 19).

Objectives of the Study
In this study, we sought to compare the performance of a
conventional and a spectral cytometry system, specifically in
signal quality, extent of spreading error, and signal resolution
from spread for mid- to large-size panels, in a number of
immunological contexts. Additionally, we sought to compare
the results of compensation and unmixing when applied to
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Figure 1. Conventional and spectral cytometry. A diagrammatic representation of conventional and spectral cytometry. In this example,
(A) a blue 488 nm laser excites two fluorophores, PE and PE/CF594. (B) The emitted signal from both fluorophores is collected through
optical filters, (C) and the relative signal arriving at each detector is shown. (D) Uncompensated raw data can then (E) be compensated to
resolve the two signals. In spectral unmixing (F and G) signals are collected across a number of detectors, and (H) integrated signals are
then unmixed from each other to generate (I) resolved signals. Compensation beads stained with BV711 plotted after acquisition (J) the
conventional system and (K) spectral system. Profile of compensation beads stained with BV711 or BV785 when run on the (L)
conventional or (M) spectral system, showing violet (405 nm) laser detectors only. [Color figure can be viewed at wileyonlinelibrary.com]
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the data from the spectral system, to identify potential advan-
tages of the spectral unmixing approach. Importantly, in
comparing these systems, there are numerous differences in
fluidics and optical design, and these designs do not necessar-
ily reflect all conventional or spectral systems. As such, our
aim was to assess these factors from the point of a view of a
researcher applying flow cytometry experimentally, weighing
the relative strengths and weaknesses in a research context,
rather than providing a theoretical or mathematical compari-
son between the methods.

METHODS

Mice and Anesthetics
Unless stated otherwise, all experiments were performed
using female C57BL/6 mice aged between 8 and 12 weeks.
Mice were purchased from the Animal Resources Centre
(WA, Australia). All mice were housed (six per cage) in
Hepa-filter cages with food and water supplied ad libitum as
per the University of Sydney animal housing regulations. Eth-
ical approval for the experimental use of mice was obtained
from the Animal Ethics Committee at the University of Syd-
ney, under protocols K20/8-2008/3/4863, K20/6-2012/3/5761,
K20/11-2011/3/5660, and 2013/5660-273. Mice undergoing
temporary anesthesia for intranasal inoculation, or other pro-
cedures, were injected i.p. with 250–300 ml of Avertin
according to a weigh–volume nomogram. Mice undergoing
terminal procedures were given 350–500 μl of anesthetic,
followed by vena caval section and left ventricular cardiac
perfusion with 30 ml of ice-cold PBS. Avertin anesthetic was
prepared by dissolving 1 g of 2,2,2-tribromoethanol (Sigma-
Aldrich) in 1 ml 2-methyl-2 butanol (Sigma-Aldrich). Heated
tap water (50 ml) was then added to the solution and thor-
oughly mixed before sterilizing through a 0.2 mm syringe fil-
ter in 5 ml aliquots. The Avertin mixture was stored at
−20�C in the dark until use.

Inoculation of Mice with West Nile Virus
Supine, anesthetized mice were inoculated intranasally with
10 μl of West Nile virus (WNV), 5 μl per nostril. Mice were
given a total of 6 × 104 plaque-forming units (PFU), the lethal
dose for 100% (LD100) of mice by this route of inoculation.

Cell Isolation and Preparation
Bone marrow was prepared as described in reference (20).
Mouse femurs were collected, and the distal and proximal
ends removed with a scalpel or surgical scissors. The femur
was then flushed with 1–3 ml of cold PBS (from a 5 ml
syringe using a 33G needle) to collect BM cells into a 5 ml or
15 ml tube. Cells were then centrifuged at 500g for 5 min at
4�C to pellet the cells. Samples were then resuspended in
700 μl to 1 ml of fluorescence-activated cell sorting (FACS)
buffer (PBS, 5 mM EDTA, 5% FCS), counted, and the desired
cell numbers transferred to a 96-well plate for staining. Sam-
ples were kept on ice until antibody labeling later on the
same day.

Spleens were removed from the peritoneal cavity and
gently mashed through 70 μm cell strainers in 5 ml of cold
PBS and centrifuged at 500g for 5 min at 4�C. Isolated spleen
cells were then resuspended in 1–4 ml of FACS buffer and
counted. After counting, cells were then placed in wells of a
96-well plate for cell staining. Samples were kept on ice until
antibody labeling later on the same day.

Brain samples were prepared by cardiac perfusion with
30 ml of ice-cold PBS, under deep anesthesia to clear the
blood vasculature. Brains were removed from the skull, and
mechanically disrupted in cold PBS using a metal sieve. Brain
homogenates were topped up to 18 ml of PBS and 2 ml of a
10X solution of deoxyribonuclease I (DNase I) and collage-
nase added for a final concentration of 1 mg/ml collagenase
and 0.1 mg/ml DNase, and incubated at 37�C for 1 h. Alter-
natively, brains were placed into 9 ml of PBS in C-tubes
(Miltenyi Biotech, Bergisch Gladbach, Germany), cut into
eight sections, and kept at 4�C for up to 3 h on ice. Tubes
then received 1 ml of 10X collagenase/DNase solution and
the tissue was disrupted using a custom protocol on the
GentleMacs auto-dissociator (Miltenyi Biotech, Bergisch
Gladbach, Germany) for 30 min. Samples were then cen-
trifuged (500g, 4�C, 10 min) and resuspended in 7 ml of a
30% Percoll solution (26.31% Percoll stock, 10% 1.5 M NaCl,
63.7% Media). This mixture was then slowly overlayed onto
3 ml of 80% Percoll (73.1% Percoll stock, 10% 1.5 M NaCl,
16.9% sterile H2O) using a 10 ml pipette. The layered mixture
was centrifuged at 1825g for 25 min at 25�C with the brake
off. After centrifugation, the top layer of fat was removed and
2 ml of the cellular interface was pipetted into a new 15 ml
tube and topped up with 5 ml FACS buffer, before centrifuga-
tion (500g, 4�C, 5 min) and resuspension in 250 μl of FACS
buffer. Samples were kept on ice until flow cytometry anti-
body labeling later on the same day.

Cell suspensions from digested brain tissues were coun-
ted on a hemocytometer and assessed for viability using try-
pan blue exclusion. Bone marrow and spleen cell suspensions
were analyzed on a XP-100 hematological analyzer (Sysmex,
Kobe, Hyogo, Japan).

Cell Staining
Samples were distributed into wells of a 96-well plate, typi-
cally 1 × 106 cells per well, centrifuged at 300–500g for 5 min
at 4�C and the supernatant discarded. Samples were then
resuspended in 50 μl PBS-containing Zombie NIR Live/Dead
(1/1,000, BioLegend, San Diego, CA) and purified anti-mouse
CD16/32 (1/100, BioLegend), incubated for 20 min at 4�C,
and then topped up with PBS before centrifugation. Samples
were then resuspended in 50 μl of antibody master mix, and
incubated for a further 30 min at 4�C before centrifugation
and washed twice. Antibody details are provided in
Supporting Information Table S4. Samples were then fixed in
4% paraformaldehyde (PFA) or fixation buffer (BioLegend)
for 10 min. After fixation, samples not requiring intracellular
staining were washed once, centrifuged at 800g for 5 min, and
resuspended in FACS buffer and kept at 4�C for up to 3 days
until flow cytometric acquisition. Alternatively, samples were
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processed for intracellular staining. For instrument compari-
sons and compensation/unmixing, UltraComp beads
(Thermo Fisher Scientific, Waltham, MA), or quantum sim-
ply cellular beads (QSCB) were labeled with selected
fluorophore-conjugated antibodies in the same conditions as
cellular samples, including staining time, temperature, and
fixation.

Intracellular Staining
For intracellular staining of transcription factors, cells were
washed in FACS buffer following fixation and permeabilized
in 50–100 μl of FoxP3 fixation/permeabilization buffer
(eBioscience, San Diego, CA) for 20 min at RT. After
washing, samples were resuspended in 50 μl FoxP3
permeabilization buffer containing specific concentrations of
intracellular antibodies. Samples were then incubated for
45 min at RT, washed in permeabilization buffer, and then
washed in FACS buffer.

Instrumentation
For flow cytometry, samples were analyzed on a 4-laser
Becton-Dickinson (BD, Franklin Lakes, NJ) Fortessa X-20
(conventional system), a 5-laser BD LSR-II (conventional
system), or a 3-laser Cytek Aurora (spectral system).
Configurations are provided in the Supporting Information
Tables S1–S3. All instruments were subject to daily QC proce-
dures before the samples were acquired. The data in Figures 1
and 2 were generated on the BD Fortessa X-20 (conventional
system) or Cytek Aurora (spectral system). For these compar-
isons, only the violet, blue, and red lasers were used with
fluorophores that were compatible with both systems. The
data in Figures 4–7 were generated on the BD Fortessa X-20,
BD LSR-II, or Cytek Aurora, as specified in the figure legends.
The data in Figure 3 were generated on the spectral
system only.

Data Analysis
For “peak channel” data, the channel with the peak signal for
each fluorophore in each case was selected as the “target”
detector, and compensation was performed in FlowJo v10.6.1
(BD). Of note, in the fluorochromes included in the study,
each fluorophore peaked in a separate channel on the Aurora,
as it has many more detectors than a conventional system;
therefore, we did not need an approach to handle fluoro-
chromes peaking in the same detector. Compensation for
“virtual channel” data, and spectral unmixing, was performed
in SpectroFlo software (Cytek Biosciences, Fremont, CA).
Graphs were generated in PRISM (GraphPad, San Diego CA).

RESULTS

Comparing Staining on the Conventional and Spectral
System
Initially, we sought to compare the performance of a conven-
tional and spectral system in terms of signal quality per fluo-
rophore. To do this, we prepared compensation beads labeled
with a variety of common fluorophores and recorded them

on a conventional system (BD Fortessa X-20, using 12 detec-
tors across 3 lasers) or a spectral system (Cytek Biosciences
Aurora, Fremont, CA, using 38 detectors across 3 lasers). The
spectral detectors allowed for measurement of fluorescence
signal with a detection range up to at least 1 × 106, greater
than the detection range up to 2.62 × 105 on the conventional
system. For the fluorophore-bound beads analyzed in this
experiment, the signal CVs were similar, suggesting similar
signal quality (Supporting Information Fig. S1).

Comparing Signal Spread and Resolution on the
Conventional and Spectral Systems
To compare data generated on each system in terms of signal
spread and resolution, we examined the signal from pairs of
fluorophore-labeled compensation beads, plotting the signal
from fluorophores in neighboring detectors excited by the
same laser (Fig. 2A–D) or from fluorophore pairs that exhibit
similar emission properties excited by different lasers
(Fig. 2E–H). For each fluorophore pair, the spread of the
offending positive signal (red) is shown against the positive
signal in the receiving detector (blue). We made these com-
parisons for compensated data from the conventional
(Fig. 2A,E) and spectral systems when using data recorded in
the peak channel (Fig. 2B,F). We also made these compari-
sons for compensated fluorophores on the spectral system
after aggregating each signal into virtual filters (Fig. 2C,G), to
match the filter configuration of the conventional system as
closely as possible. Finally, we made these comparisons for
data acquired on the spectral system after unmixing (Fig. 2D,
H). To quantify these relationships, we used two metrics: a
spreading ratio and a resolution ratio (Fig. 2I). The spreading
ratio was calculated as the 99th percentile of the offending
fluorophore in the receiving detector, divided by the 99th per-
centile of unstained beads in the same channel. The resolu-
tion ratio was calculated as the median of the receiving
fluorophore in the receiving detector, divided by the 99th per-
centile of the offending fluorophore in the same detector. A
demonstration of how these metrics reflect patterns on the
plots is provided in the Supporting Information Figure S2.

When we compared compensated data from the conven-
tional (Fig. 2A,E) and spectral system (peak detectors, Fig. 2B,
F), higher levels of spread of the positive signal into neighbor-
ing or cross laser detectors (red arrows) were evident on the
conventional system when compared to the spectral system.
When we quantified this (Fig. 2J), we found that the degree
of spread across all measured fluorophores was higher overall
for the conventional system compared with the spectral sys-
tem. However, because the signal intensity in the receiving
detector (blue) was higher for the conventional system com-
pared with the spectral system, the increased spread did not
have a large impact on the resolution of signal from spread.
When we quantified the resolution of the signal of the fluo-
rophore in the receiving detector (blue) against the spreading
signal (red), we found some cases where, despite decreased
spread on the spectral system when compared to the conven-
tional system, no change was found in the resolution of blue
from red signal (e.g., PE-CF594 vs PerCP/Cy5.5). However, in
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Figure 2. Legend on next page.
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many cases, this reduction in spread was paired with an
increase in the resolution of blue from red signal (e.g., BV711
vs BV785).

One possible explanation for these differences was that
the “peak” detectors used on the spectral system were captur-
ing different light spectra, due to their smaller band pass filter
range (e.g., the FITC detector on the conventional system
captures 500–550 nm, whereas the “peak” FITC detector on
the Aurora captures 498–518 nm). To test this, we compen-
sated data from the spectral system using virtual filters, where
data were integrated from multiple detectors to match
(as closely as possible) the band-pass filter range of the

corresponding detector on the conventional system
(Supporting Information Fig. S3). When we compared com-
pensated data from these virtual channels against the com-
pensated peak channel data, or data from the conventional
system, we found little change in either spread or resolution
values (Fig. 2C,G,J,K).

Spectral Unmixing and Compensation
On many conventional systems, fluorophores with very simi-
lar peak emission properties are often captured using the
same wide band-pass filter, meaning that only one of those
fluorophores may be used in a given panel (e.g., APC and

Figure 2. Signal comparisons between the conventional and spectral systems. Compensation beads labeled with various fluorophores plotted
against each other. For the data in this figure, the fluorophores tested were excited using the same lasers on both the conventional
(BD Fortessa X-20) and spectral (Cytek Aurora) systems. Of note, PE-CF594 was detected using the blue laser on both the spectral system and
the conventional system, having a Yellow/Green 561 nm option available on the conventional system. The spread of one fluorophore signal
(red) is plotted (and measured) against a (A–D) neighboring fluorophore (blue) on the same laser, or (E–H) another fluorophore (blue) with
similar emission properties that is primarily excited by a different laser (cross-laser fluorophore). The degree of spread (red) and the resolution
of signal (blue) from spread (red) are quantified by two ratios. Spread is calculated as the 99th percentile of the spreading fluorophore (red) in
the receiving detector, divided by the 99th percentile of unstained beads in the same channel. Resolution is calculated as the median of the
receiving fluorophore (blue) in the receiving detector, divided by the 99th percentile of the spreading signal (red). Spreading results for
fluorophore pairs are provided in J (where increasing values are indicated by the intensity of color grading from white to red), and resolution
results are provided in K (where increasing values are indicated by the intensity of color grading from white to blue). Comparisons were made
for: (A, E) data from the conventional system when compensated, (B, F) data from the spectral system (using “peak” signal detectors only)
when compensated, (C, G) data from the spectral system (using virtual channels derived from integrated signal) when compensated, and (D,
H) data from the spectral system when unmixed. Details on the integration of signal into virtual channels are provided in the Supporting
Information Figure S3. Red arrows indicate occasions where greater signal spread was observed for data from the conventional system,
compared to data from the spectral system. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 3. Comparing compensation and spectral unmixing on the spectral system. QSCBs labeled with various fluorophores, subject to spectral
unmixing (SpectoFlo) or compensation (FlowJo). Beads were labeled with (A) AF647 and APC, (B) PE/Cy5.5 and PerCP/Cy5.5, (C) BB700 and PerCP/
Cy5.5, or (D) PE-CF594 and PE/Dazzle594. In some cases, these fluorophores had the same “peak” detector. As such, for compensation, one
fluorophore had to be assigned to a nonoptimal channel in order to performcompensation. [Colorfigure canbe viewed atwileyonlinelibrary.com]
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AF647). A key claim of the spectral approach is that dyes
with similar emission properties can be analyzed simulta-
neously in sufficient detail on a spectral system to create a
signature through the use of a larger number of detectors, all-
owing these signals to be spectrally “unmixed” from each
other. However, as these comparisons are often made in the
context of unmixing performed on a spectral system and
compensation performed on a conventional system, the rela-
tive contributions of the system itself (detection methods,
optical configurations, detection sensitivity, electronic noise,
etc) and the signal correction process (compensation,
unmixing) are often intertwined. While a thorough mathe-
matical comparison of the signal correction approaches was
outside the scope of this study, it has been studied elsewhere
(19). However, in our study, we sought to determine if the
provided unmixing approach gave any specific advantages
over compensation in the context of a spectral analyzer
(Fig. 2D,H). Overall, we found that unmixed and compen-
sated data were largely comparable (Fig. 2J,K), where spread
and resolution for unmixed data for the fluorophores exam-
ined were similar to compensated peak channel or virtual fil-
ter data from the spectral system. However, we did find some
cases where unmixing led to reduced spread and increased
resolution, such as in PE-CF594 vs PerCP/Cy5.5.

Separation of Highly Overlapping Fluorophores Using
Spectral Unmixing and Compensation
Despite this, we reasoned that spectral unmixing may result
in improvements in signal resolution for fluorophores that
had very similar peak emission properties, due to the more
detailed spectral signature that can be measured on the
Aurora. To test this, we labeled QSCB multilevel capture
beads with a variety of fluorophores, including a number of
highly overlapping fluorophores that would not normally be
combined on a conventional system as they would be mea-
sured in the same detector. These samples were recorded on
the spectral system and subject to compensation (using
FlowJo v10.6.1) or spectral unmixing. For some dyes that are
typically measured in the same detector but are spectrally dis-
tinct, such as AF647 and APC, we were able to successfully
separate these signals using either compensation (peak chan-
nel) or spectral unmixing (Fig. 3A), although we did find bet-
ter resolution in the unmixed data. However, for other dyes
with similar emission properties, such as PE/Cy5.5 and
PerCP/Cy5.5 (Fig. 3B) or BB700 and PerCP/Cy5.5 (Fig. 3C),
we found that we these two signals were substantially better
resolved from each other when subject to spectral unmixing,
compared with (peak channel) compensation. Nevertheless,
we also found some instances where compensation resulted in
better signal resolution than unmixing (Fig. 3D).

Comparing Leukocyte Panels on Conventional vs
Spectral System
Importantly, we sought to explore the application of spectral
cytometry for mid to large size panels from the perspective of
a cytometry user and how this technology may apply to their
research. Thus, we compared the resolution of cellular

populations on the two systems. To do this we labeled bone
marrow (BM) cells from mock- or West Nile virus (WNV)-
infected mice with a panel of antibodies against typical leuko-
cyte markers. After staining and fixation, each sample was
split into two and run in parallel on a conventional system
(using four lasers, compensated) and a spectral system (using
three lasers, unmixed). Although different lasers were used on
each system, we sought to determine if the staining patterns
and frequencies of each population were comparable between
systems. We adjusted the plots so that a comparable dynamic
range was displayed for each system, and the frequencies of
each population were calculated.

We examined BM cells from mock-infected animals and
compared data generated on the spectral and conventional
systems for singlets, cells, live cells, leukocytes (Fig. 4A–D), T
cells, NK cells, NKT cells, CD4+ T cells, CD8α+ T cells, plas-
macytoid dendritic cells (PDCs), B cells, conventional den-
dritic cells (cDCs) (Fig. 4E–H), neutrophils, eosinophils,
resident macrophages, Ly6Chi monocytes, and Ly6Clo mono-
cytes (Fig. 4I–L). Overall, both the staining patterns and
quantification of each of these populations were largely com-
parable between the two systems (Supporting Information
Fig. S4A).

In addition to examining normal BM, we also sought to
compare the resolution of each system on a more complex
assay that included intranuclear staining. To this end, we
designed a seven-color panel identifying regulatory T cells in
the murine spleen. As with the BM samples, each sample was
split into two and the same panel run in parallel on a conven-
tional system (using four lasers, compensated) and a spectral
system (using three lasers, unmixed). In each data set, we
examined singlets, cells, live cells (Fig. 5A), T cells (Fig. 5B),
CD4+, and CD8α+ T cells (Fig. 5C). Within the CD4+ T-cell
population, FoxP3+CD25+ regulatory T cells were identified
(Fig. 5D, left panel), using the fluorescence minus one (FMO)
samples to determine the cut-off values for populations
(Fig. 5D, center and right panel). Interestingly, we found two
prominent differences in this case. The resolution of AF700
CD4 from the spread of BV711 CD8α was improved on the
spectral system, as was the resolution of APC FoxP3 from
background.

Comparing Brain Samples Panels on Conventional vs
Spectral System
We also sought to compare more highly autofluorescent sam-
ples. To do this we infected mice with WNV and isolated
brain tissue for flow cytometry 7 days post infection. As with
the BM, each sample was split into two and the same panel
run in parallel on a conventional system (using four lasers,
compensated) and a spectral system (using three lasers,
unmixed). In each data set, we examined singlets, cells, live
cells, leukocytes, (Fig. 6A–D), neutrophils, eosinophils, NK
cells, NKT cells, CD4+ T cells, CD8α+ T cells (Fig. 6E–H),
PDCs, B cells, cDC, microglia, Ly6Chi and Ly6Clo infiltrating
monocytes (Fig. 6I–L). Overall, we found staining patterns
and quantification to be similar between the systems
(Supporting Information Fig. S4B). However, population
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resolution in fluorophores being measured in areas of high
autofluorescence clearly differed between the samples
acquired on the conventional versus spectral system, as
described below.

Autofluorescence Extraction
An additional advantage of a spectral approach is in the sepa-
rate measurement of autofluorescence. By measuring the
whole fluorescent spectrum of unstained cells, and treating
this fluorescent signature as another fluorophore, the auto-
fluorescent signal can be used as another marker for cellular
identification of, for example, neutrophils or senescent cells
(21, 22). Alternatively, the autofluorescent signal can be
reduced by unmixing the signal from other signals (referred
to as extraction), potentially improving resolution in some
channels, particularly for cells from highly autofluorescent
organs like liver, brain and skin. To determine the extent to
which autofluorescence extraction improves resolution, we
sought to compare highly autofluorescent samples on both
the conventional and spectral systems, including using
autofluorescence extraction in the unmixing process for data
generated on the Aurora.

The autofluorescence signal in the CNS samples was
highest in the 500–650 nm region, in particular in the detec-
tors for the violet laser, but there is also substantial signal
measured from the blue laser. By comparing unmixed data,
with or without including autofluorescence measured on
unstained cells as a parameter, we determined whether
autofluorescence extraction improved the resolution of signal
in brain samples. In comparing the fluorescence spectrum of
the unstained brain to the spectra of the various fluorophores,
it is clear that the interference is largest with FITC and
BV510 (Fig. 7A). This is also obvious in the labeled samples,
with discrimination of individual populations being almost
impossible due to autofluorescence interference (Fig. 7B).
When autofluorescence extraction was applied, the
populations became clear (Fig. 7C), increasing the resolution
ratio of the measured populations (defined as the median of
the positive population, divided by the 99th percentile of the
negative population). BV605 is still in this region where
autofluorescence impacts the signal (Fig. 7D), although the
interference is much less than with FITC and BV510 (Fig. 7E,
F). When examining the spectrum around the 780 nm region
(Fig. 7G), autofluorescence makes little difference to the signal

in these samples, and thus subtraction of autofluorescence
does not substantially improve resolution (Fig. 7H,I).

DISCUSSION

Spectral cytometry provides a number of potential advantages
over conventional cytometry through the detailed measure-
ment of the fluorescent spectrum for each fluorophore. In this
study, we sought to compare the performance of a spectral
cytometry system with conventional system. Overall, the sys-
tems were comparable for the applications we tested when
performing compensation or spectral unmixing on either sys-
tem. However, a number of differences between the two
approaches were apparent.

Signal Comparability of the Systems
Overall, the resolution of signal from background on the sys-
tems was comparable. In comparing signal resolution, we
looked at two main factors: signal from background (e.g., the
separation between the negative and positive population) and
signal spread. The former showed greater resolution of signal
from background for the fluorophores on the conventional
system, while for the latter we found a decrease in signal
spread from measurements made on the spectral system,
compared to the conventional system, and in many cases, this
was accompanied by an increase in resolution of signal from
spread. It is likely that the use of avalanche photodiode
(APD) detectors on the spectral system contributes to the
improved resolution of some of these signals, compared to
the photomultiplier tube (PMT) detectors used on the con-
ventional system, as APD have been shown to perform better
in spectral regions over 650 nm due to increased sensitivity in
these parts of the spectrum (23). Importantly, although the
resolution of individual signals from background was lower
on the spectral system compared to the conventional system
in this comparison, the improved signal resolution from sig-
nal spread in most cases indicates better performance in a
mixed panel context. Of note, in our comparison, we used
two conventional cytometers with specific configurations, and
as such, these comparisons may differ for other conventional
cytometers.

Spectral Unmixing vs Compensation
Importantly, spectral unmixing did not eliminate spreading
error, despite increased signal resolution from spreading error
in many cases. However, fluorophores that are very similar

Figure 4. Instrument comparison using a general leukocyte panel on bone marrow cells. Bone marrow cells were stained with a general
immune panel and run on the three-laser spectral system or a four-laser conventional system. On the spectral system, PE and PE tandem
fluorophores were excited with the blue laser, and on the conventional system, they were excited using the Yellow/Green 561 nm laser.
Samples were gated for (A) singlets, (B) cells, (C) live cells, and (D) CD45+ leukocytes. (E) T cells (CD3ε+NK1.1−), NKT cells (CD3ε+NK1.1+), and
NK cells (CD3ε−NK1.1+) were gated, and (F) T cells were further subdivided into CD4+ and CD8α+ subsets. (G) CD3ε−NK1.1− cells were gated for
B cells (B220+Siglec-H−) and PDCs (B220+Siglec-H+), and (H) B220−Siglec-H− cells were then gated for CD11chiMHC-IIhi cDCs. (I) CD11cneg-
intMHC-IIneg-int cells were then gated for mature (Ly6Ghi) and immature (Ly6Gint) neutrophils, and (J) Ly6G− cells were then gated for Siglec-F+

eosinophils. (K) Siglec-F− cells were then gated for F4/80+ macrophages and (L) Ly6ChiCD11b+ monocytes. The plot axes were adjusted so that
dynamic range could be directly compared between each system. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 5. Instrument comparison using a T-cell panel on spleen cells. Samples acquired on a three-laser spectral system or five-laser
conventional system. On the spectral system, PE and PE tandem fluorophores were excited with the blue laser, and on the conventional
system they were excited using the Yellow/Green 561 nm laser. Samples were gated for (A) singlets, cells, live cells. (B) Samples were then
gated for CD3ε+ cells, which were then further subdivided into (C) CD4+ and CD8α+ subsets. T-cell subsets where then gated for various
combinations of (D, E) FoxP3, CD25, and Helios, using fluorescence minus one (FMO) controls to guide the placement of gates. The plot axes
were adjusted so that dynamic range could be directly compared between each system. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 6. Instrument comparison using a general leukocyte panel on cells isolated from infected murine brains. WNV-infected murine brain
samples were run on the three-laser spectral system or four-laser conventional system. On the spectral system, PE and PE tandem
fluorophores were excited with the blue laser, and on the conventional system they were excited using the Yellow/Green 561 nm laser.
Samples were gated for (A) singlets, (B) cells, (C) live cells, and (D) CD45+ leukocytes. (E) Ly6G+ neutrophils and (F) Siglec-F+ eosinophils were
gated, before gating (G) T cells (CD3ε+NK1.1−), NKT cells (CD3ε+NK1.1+), and NK cells (CD3ε−NK1.1+). (H) T cells were further subdivided into
CD4+ and CD8α+ subsets. (I) CD3ε−NK1.1− cells were gated for B cells (B220+Siglec-H−) and PDCs (B220+Siglec-H+), and (H) B220−Siglec-H−

cells were then gated for CD11chiMHC-IIhi cDCs. (K) Cells were then gated for CD45+CD11b+ infiltrating myeloid cells, and CD45loCD11b+

microglia. (L) CD45+CD11b+ cells were then gated for Ly6ChiCD11b+ infiltrating monocyte-derived macrophages. The plot axes were adjusted
so that dynamic range could be directly compared between each system. [Color figure can be viewed at wileyonlinelibrary.com]
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may gain an additional resolution from the measurement of
the complete spectrum of each, enabling more accurate dis-
crimination between them than can be achieved using com-
pensation. This was observed for a number of highly
overlapping fluorophores that we tested. However, in one
comparison, (PE-CF594 vs PE/Dazzle594) compensation
appeared to result in improved resolution over unmixing. It is
possible that optimizing the use of specific channels on the
spectral system could maximize the level of signal of target
fluorophore relative to the spillover fluorophore being
detected. In this case, compensated data might be able to sep-
arate the signals in a manner similar to unmixing. However,
attempting to optimize this is time consuming, and in many
cases, applying the unmixing approach appears to result in
satisfactory results compared with compensation.

Autofluorescence Extraction during Spectral
Unmixing Increases Population Resolution in
Autofluorescence Wavelength Ranges
A key advantage in performing spectral unmixing is the mea-
surement and extraction of cellular autofluorescence in
labeled cells. In regions of the spectrum that exhibit low cellu-
lar autofluorescence, or in cells that exhibit low
autofluorescence, this is of little advantage. However, in auto-
fluorescent cells, in spectral regions where high levels of cellu-
lar autofluorescence are observed, such as around the
500–600 nm region, autofluorescence extraction markedly
improved the resolution of populations. This is a critical
advantage applicable to a wide range of biological contexts,
especially where autofluorescence impedes the use of a large
number of fluorophores on certain cell types or tissues, as
well as where the measurement of autofluorescence as an
additional parameter may yield interesting biological insights.

The Spectral Approach Allows for Far Greater
Flexibility in Fluorophore Choice and Panel Design
A key component of panel design in conventional cytometry, is
the choice of fluorophores that are able to be detected on a
given system, considering the excitation lasers and optical filters
available. For example, in our conventional system, the red laser
has three associated detectors, with filters designed to capture
APC (or AF647), AF700, and APC/Cy7 (or APC/H7), respec-
tively. An outcome of using a larger number of detectors in the
spectral system is greater flexibility afforded in the approach to
panel design. This was most evident when fluorophores were
used together that would normally occupy the same detector on
a conventional system (e.g., APC, AF647). However, this is also
relevant for fluorophores that are less overlapping, but when
used in conventional cytometers, the choice of one or the other

has to be made, for example, PerCP and PerCP/Cy5.5. As such,
approaches to panel design need not begin with a review of
which fluorophores are compatible with the instrument (based
on the available filters), but rather a consideration of which pos-
sible combinations of fluorophores can be successfully resolved
from one another. This allows selection from a wider range of
fluorophores, rather than a limited list of instrument-
compatible fluorophores.

The Role of Spectral Cytometry among Conventional
High-Dimensional Fluorescence and Mass Cytometry
In the field of single-cell science, the techniques of (conven-
tional) flow cytometry, mass cytometry, image cytometry, and
genomic cytometry (single-cell RNA sequencing and associ-
ated oligonucleotide reporters for antibody labeling (24)),
have all developed their own strengths and weaknesses. Flow
cytometry provides a high-throughput and cost-effective
method of measuring few parameters (currently up to approx.
27 fluorophores published, with up to 40 fluorophores
reported) on many cells with high-throughput (approx.
10,000 events/s). Mass cytometry, on the other hand, acquires
cells at a much lower rate (approx. 300–400 events/s), but
with more markers per cell (over 50 metals), with significantly
reduced overlap between reporters. Single-cell sequencing
measures cells at a very low throughput and high cost, but it
is capable of measuring hundreds to thousands of genes per
cell (RNA, transcriptome), and more recently has incorpo-
rated oligonucleotide-based reporters for antibody labeling of
cells (proteome/epitome) (24), as well as epigenomic and
other single cell measurements (25, 26). Ignoring cost, these
technologies represent a spectrum between greater numbers
of cells with fewer features per cell, and fewer cells with more
features per cell per unit time. Spectral cytometry potentially
improves on conventional flow cytometry by enabling the use
of previously impracticable fluorophore series, thereby also
providing increased flexibility of panel design, as well as
incorporating autofluorescence measurement and extraction.

In contrast to the use of fluorescent molecules in flow
cytometry, mass cytometry uses heavy metal tags and time-
of-flight mass spectrometry readouts to measure antibody
binding to cells. This method allows a much larger number of
simultaneous markers than conventional flow cytometry.
However, while mass cytometry is often used for rare and
precious samples, the time investment in acquiring samples
and performing analysis is higher than for flow cytometry.
Thus, for researchers seeking to acquire and analyze data
quickly, but requiring more colors than are available on con-
ventional instruments, spectral cytometry provides a potential
opportunity. Moreover, the use of the same fluorophore-

Figure 7. Autofluorescence correction performed on WNV-infected brain cells. (A) Spectral signatures generated on the spectral system
for unstained cells, BV510-labeled beads, and FITC-labeled beads. Fully stained samples unmixed on the spectral system (B) without and
(C) with autofluorescence correction. (D) Spectral signatures generated on the spectral system for unstained cells and BV605-labeled
beads. Fully stained samples unmixed on the spectral system (E) without and (F) with autofluorescence correction. (G) Spectral signatures
generated on the spectral system for unstained cells and BV785-labeled beads. Fully stained samples unmixed on the spectral system (H)
without and (I) with autofluorescence correction for BV785-CD11c. For each plot, percentages of cells in each populations are show, as
well a resolution ratio for each population, defined as the median of the positive population, divided by the 99th percentile of the negative
population. [Color figure can be viewed at wileyonlinelibrary.com]

Spectral Cytometry: A Spectrum of Possibilities

TECHNICAL NOTE

		  19



conjugated antibodies, staining, and analysis techniques as
conventional cytometry make this a well-characterized, read-
ily accessible technique, while also allowing an increased
number of markers to be measured. Additionally, researchers
using smaller panels may benefit from the flexibility of the
system, with a larger range of fluorophores being compatible
with the system, aiding panel design.

While spectral approaches to fluorescence cytometry
have been developed for some time, spectral cytometry is an
emerging technology in the commercial space and is still
maturing. However, the nature of the spectral approach
exhibits several clear advantages over conventional cytometry
and should be incorporated into routine cytometry
approaches where possible.
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Abstract

Acute myeloid leukemia (AML) measurable residual disease (MRD) evaluated by multi-

parametric flow cytometry (MFC) is a surrogate for progression-free and overall survival

in clinical trials and patient management. Due to the limited number of detection channels

available in conventional flow cytometers, panels used for assessing AML MRD are typi-

cally split into multiple tubes. This cripples the simultaneous and correlated assessment of

all myeloblast measurements. In response, we prototyped a single-tube 27-color MFC

assay for the evaluation of AML MRD, incorporating all recommended markers. Marrow

aspirates from 22 patients were processed for analysis using full spectrum flow cytometry

(FSFC). The signal resolution of each marker was compared between samples stained

with single antibody vs. the fully stained panel. The analytical accuracy for quantifying

hematopoietic cells between our established 8-color assay and the new 27-color method

were compared. Variations within an operator and between separate operators were

assessed to evaluate the assays reproducibility. The limited of blank (LOB), limit of detec-

tion (LOD), and lower limit of quantification (LLOQ) of the 27-color method were empiri-

cally determined using limiting dilution experiments. The stability of antibody cocktails

over a period of 120 h was also studied using cryopreserved marrow cells. The stain indi-

ces for all antibodies were lower in the fully stained panel compared to cells stained with

one antibody but clear separations between negative and positive signals were achieved

for all antibodies. Our results demonstrated a high concordance between the established

8-color method and the new 27-color assay for enumerating myeloblasts and MRD inter-

pretation within and between operators. The data further showed that the single-tube

27-color assay easily achieved the minimum required detection sensitivity of 0.1%. When

antibodies were combined, however, expression intensity of some antigens deteriorated

significantly when stored. Our single-tube 27-color panel is a suitable, high sensitivity flow

cytometric approach that can be used for AML MRD testing, which improves the correla-

tion of aberrant antigens and detection of asynchronous differentiation patterns. Based

on the stability study, we recommend the full panel be made prior to staining.
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1 | INTRODUCTION

Acute myeloid leukemia (AML) is a heterogeneous group of diseases

characterized by more than 20% abnormal immature myeloblasts in

the bone marrow [1]. It is diagnosed based on a combination of mor-

phology assessment, genetic aberrancies, and its immunophenotypic

profile. Even though AML patients can be stratified into favorable,

intermediate, and adverse-risk groups based on their cytogenetic pro-

files, their responses to therapy within each group varies widely [2, 3].

The 5-year survival rate has significantly improved since the 1970s,

but only 26% of patients diagnosed with AML will survive more than

5 years, and as many as 70% of patients older than 65 years will suc-

cumb to the disease within 1 year of diagnosis [4, 5]. A myriad of fac-

tors presenting at initial diagnosis such as age, cytogenetics,

mutational profile, and remission status following treatment have

been associated with prognosis, but they have all failed to accurately

predict outcomes [2, 6–8].

The identification of residual leukemic cells following therapy,

termed measurable residual disease (MRD; formerly known as minimal

residual disease), has emerged as an important independent prognos-

tic indicator for many hematological malignancies including AML

[9–12]. When used in conjunction with other available clinical infor-

mation such as cytogenetics and molecular data, monitoring of MRD

levels can serve as a surrogate to establish a deeper remission status

for risk stratification [13]. Together, these parameters can help predict

patient outcomes, inform post-remission treatment, and enable early

intervention when necessary. Furthermore, MRD status has the

potential to replace traditional endpoints used in clinical practice to

accelerate drug testing and regulatory approval.

The detection of MRD, however, can be challenging due to the

rarity and heterogeneity of neoplastic cells. High sensitivity methods

that can detect the presence of leukemic cells down to levels of

10�4–10�6 white blood cells are required. Multiparametric flow cyto-

metry (MFC) is a suitable technique for monitoring MRD due to its

high degree of detection sensitivity and specificity. This technique is

also accessible to many laboratories, applicable to more than 90% of

AML patients, and can be used to distinguish normal vs. abnormal

blasts [14]. Many studies have independently demonstrated MFC to

highly correlate with event-free survival and can be more predictive

than traditional approaches such as morphology and cytogenetics [9,

15–17].

Distinguishing abnormal blasts from normal maturing myeloid

progenitors by MFC based on their antigen expression profiles is chal-

lenging. This is because the endogenous bone marrow microenviron-

ment is dynamic and heterogeneous, and there is no single typical

‘AML immunophenotype’ that can be used to distinguish abnormal

blasts from normal maturing myeloid progenitors. Identification of

abnormal myeloblasts is further complicated by the acquisition of

atypical antigens post-treatment by normal recovering myeloblasts.

Two different approaches are used for the evaluation of residual AML

by MFC; the Leukemia Associated ImmunoPhenotype (LAIP) approach

and Different from Normal (DfN) approach, as summarized by the

European LeukemiaNet Working Party (ELN) [18]. In the LAIP-based

approach, the phenotype of immature blasts is assessed at diagnosis

and followed post-therapy. The aberrancies detected are mainly char-

acterized by cross lineage expression of non-myeloid antigens on

myeloid blasts (e.g., CD5, CD7, CD56), asynchronous expression of

maturation-associated antigens on immature cells (e.g., CD11b), and

lack of expression (e.g., CD13, CD33) or overexpression (e.g., CD33,

CD34, CD117) of myeloid-related antigens. Unlike bulk testing

methods such as molecular assays, MFC allows for the interrogation

of many markers at the single cell level, allowing the precise delinea-

tion of many cellular subsets within a patient's sample. The DfN strat-

egy compares the antigen differentiation expression patterns on

suspected residual leukemic cells with those of normal myeloblasts.

Although similar, this is not an approach strictly reliant on a fixed

LAIP, which can alter following therapy or clonal evolution and does

not require a diagnostic sample.

The successful implementation of a flow-based AML MRD assay

requires excellent technical expertise, careful consideration of the

antibody fluorochrome combinations, standardized flow data analysis,

and extensive knowledge about normal and abnormal bone marrow

expression patterns of the selected CD markers [19]. Due to the lim-

ited capability of contemporary flow cytometers approved for clinical

use to detect more than 12 markers simultaneously, a typical MFC

panel recommended for monitoring AML MRD usually consists of a

more than one tube, each with distinct functions [20]. One tube is

often designed to observe the early maturation of hematopoietic stem

cells into each of the major cell lineages and typically consist of anti-

bodies targeting CD13, CD15, CD19, CD33, CD34, CD38, CD45,

CD71, and CD117. A second tube may be used to observe the matu-

ration of early myelomonocytic precursors to later-stage mature forms

and typically consists of CD4, CD13, CD14, CD16, CD34, CD38,

CD45, CD64, CD123, and HLADR. Markers in this tube can also be

used to identify plasmacytoid dendritic cells and basophil lineages. A

third tube may be used to identify the abnormal expression of T and

NK cells-associated lymphoid antigens on progenitor populations and

would typically consist of antibodies targeting CD2, CD5, CD7, CD33,

CD34, CD38, CD45, CD56, and HLADR.

Technological advances in recent years have enabled the simulta-

neous assessment of a higher number of parameters in a correlated

fashion, improving the ability to detect aberrant antigens and asyn-

chronous differentiation patterns. Until recently, most clinical labora-

tories were combining no more than 10 antibodies per tube. The

introduction of full spectrum flow cytometry (FSFC) by Cytek Biosci-

ences and cytometry by time of flight (CyTOF) by Fluidigm represent

revolutionary platforms that allow for a high-dimensional acquisition

of data generated from 40 or more antibodies. While both technology

platforms have advantages and disadvantages in terms of characteriz-

ing low frequency populations, studies reported better cell recovery

and faster acquisition times with the FSFC approach [21, 22]. By mea-

suring the full spectrum of light emissions from each interrogated

fluorochrome, FSFC can distinguish between emissions from combi-

nations of fluorochromes that conventional MFC systems cannot; for

example, the concurrent detection of APC and Ax647 fluorochrome-

generated spectra, which share near identical emission peaks. This
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provides a new avenue to combine all routinely used AML MRD

markers into one single tube, for a comprehensive immunophenotypic

analysis by FSFC. Due to the increased flexibility of FSFC, antibody

panels can be expanded to include a viability dye and additional anti-

gens of interest [23, 24]. This eliminates the redundancy of markers

used in multi-tubes system, lowering the reagent cost associated with

the assay.

In this manuscript, we developed a single-tube 27-color flow

cytometric assay for the evaluation of AML MRD. The panel was cre-

ated using commercially available fluorochrome-conjugated monoclo-

nal antibodies and optimized after several rounds of trial and error.

We evaluated whether the high number of antibodies incorporated in

the final panel would decrease staining resolution between positive

and negative signals, partly due to fluorochrome spread, steric hin-

drance, and/or the unmixing algorithm [22, 25]. To verify this, we

compared the performance of antibodies when they were used alone

vs. when they were used conjointly with all other antibodies in the

panel. To test the analytical accuracy of this novel 27-color method, a

concordance study was performed to evaluate the numbers and per-

centages of various cell populations as detected by FSFC with results

obtained from our established 8-color MFC panel as the predicate.

The limit of blank (LOB), limit of detection (LOD), and lower limit of

quantification (LLOQ) were empirically established to determine if the

assay met the established minimum required detection sensitivity of

0.1% for assessing AML MRD [18]. To investigate if consistent results

could be repeatedly attained for meaningful interpretation, intra- and

inter-operator variation was studied.

Even though antibody cocktails are considered indispensable in

the clinical flow laboratory for assuring assay consistency, storage of

the 27-color panel for more than 24 h resulted in interactions

between fluorochromes and tandem breakdown, causing loss of fluo-

rochrome brightness and/or changes in antigen expression pro-

files [26, 27]. Overall, our results demonstrated this single-tube

27-color assay could serve as a template for the future development

and validation of a clinical method to process and analyze bone mar-

row samples for AML MRD testing, allowing for the simultaneous cor-

relation of aberrant antigens and detection of asynchronous

differentiation patterns.

2 | MATERIALS AND METHODS

2.1 | Bone marrow aspirates

This study was reviewed and approved by the Institutional Review

Board at Roswell Park Comprehensive Cancer Center (STUDY ID

00001640/BDR 145221). A total of 22 sodium heparinized, de-

identified bone marrow samples from patients with suspected AML

MRD, and three de-identified staging marrows negative for AML

received by Roswell Park's Clinical Flow Cytometry Laboratory were

used after all requested testing had been performed. All bone marrow

aspirates were processed within 24 h of collection, except for testing

antibody cocktail stability; in which case leukocytes were separated

by ficoll density gradient centrifugation and cryopreserved prior to

thawing for surface labeling.

2.2 | Panel design

The initial fluorochrome combinations for the 27-color panel were

selected based on antigen density, fluorochrome intensity, expression

profile, and reagent availability. Using Cytek's Full Spectrum Viewer,

an online tool that helps determine the compatibility of fluorochrome

combinations, relevant fluorochrome-conjugated antibodies were

selected and gradually added to the backbone panel. As a rule of

thumb, the addition of a new fluorochrome to the panel should not

significantly increase the Complexity™ Index, which is an overall mea-

sure of uniqueness of all dyes in a full spectrum cytometry panel; the

Complexity™ Index of our final panel was 29.6. The composition and

sources of the final panel can be found in Table S1. The full spectrum

can be found in Figure S1. For a list of fluorochrome-conjugated anti-

bodies used in our established 8-color panel, see Table S2.

2.3 | Cell preparation and staining

The bone marrow cells were processed using our conventional wash-

stain-lyse-wash method [28]. Briefly, bone marrow aspirates were col-

lected and filtered using 70 μm cell strainer (Millipore Sigma; Cat

#Z742103) to exclude spicules, washed once using flow cytometry

buffer (FCM; Leinco Technologies; Cat #S622; containing 0.5% bovine

serum albumin, 0.1% sodium azide, and 0.04 g/L tetrasodium EDTA in

phosphate-buffered saline), and resuspended to 1 � 107 cells/ml. Two

hundred microliters of the washed bone marrow cells were transferred

to a 12 � 75 mm polystyrene round-bottom tube (Corning; Cat

#352052) and incubated with mouse IgG (Invitrogen; Cat #10400C) for

10 min to block Fc receptors. The cells were then stained according to

the antibody panel outlined in Table S1 for 30 min at room tempera-

ture. To preserve the integrity of the fluorochromes, all staining proce-

dures were performed in the dark. To achieve optimal performance, all

antibodies were tittered and used at saturating concentrations. The

cells were lysed for 5 min using 2 ml of ACK Lysing Buffer (Thermo

Fisher Scientific; Cat #A10492-01), washed using 3 ml of FCM buffer,

and centrifuged at 540�g for 5 min. The supernatant was discarded,

and the cell pellet was resuspended in 500 μl of FCM buffer for acquisi-

tion on Cytek® Aurora. Flow cytometric data for all samples were

acquired immediately after staining and unless otherwise specified, a

minimum of 500,000 events were collected for each file.

2.4 | Cryopreservation and thawing of marrow
cells

For testing antibody cocktail stability over time, bone marrow samples

from AML patients with relapsed disease were frozen at �152�C and

thawed immediately prior to staining. For cryopreservation, fresh
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marrow aspirates were layered on top of Lymphocyte Separation

Media (Corning; Cat #25-072-CV) and centrifuged at 400�g for 30 min

without brake. Mononuclear cells were transferred to a new 15-mL

high-clarity polypropylene falcon tube (Corning; Cat #352196), washed

with PBS, and resuspended in ice-cold RPMI 1640 with L-glutamine

(Corning Cellgro; Cat #10-040-CV) and supplemented with 10% heat

inactivated fetal bovine serum (Biotechne; Cat #S11150H). Freezing

solution, consisting of 80% heat inactivated fetal bovine serum and

20% DMSO (Corning Cellgro; Cat #25-950-CQC), was added dropwise

to the cells at 1:1 ratio while agitating and slowly frozen in an ethanol

bath to -80�C before being transferred to the �152�C freezer. At

T = 0, 24, 48, 72, 96, and 120 h, frozen cells were thawed by incubat-

ing in a water bath pre-warmed to 37�C for 2 min, transferred to com-

plete media with DNase (70 U/ml Sigma-Aldrich; Cat #D4513),

incubated for 15 min, washed, and resuspended in FCM Buffer.

2.5 | Establishing detection sensitivities

The current consensus from European LeukemiaNet recommends a

minimum of 500,000 and up to 1 million leukocytes be acquired to

achieve a detection sensitivity of 0.1% as the cut-off between MRD

positive and MRD negative [18]. It should, however, be noted that

MRD quantification below 0.1% may still represent residual leukemic

cells. To empirically determine the ability of our 27-color assay to

detect rare events, a limiting dilution experiment was performed and

the LOB, LOD, and LLOQ were established in accordance with Clinical

Laboratory Standards Institute recommendations [29].

For establishing LOB and LOD, staging marrows samples were

stained with all the antibodies in Table S1 except CD34 and CD117.

A minimum of 1 million events was acquired and the assay was per-

formed in duplicate on three different bone marrow samples. The

LOB was calculated as the average percentage of CD34+/CD117+

events falling into the blast region (e.g., CD45dim, SSC-low) plus

1.645 times the standard deviation. The LOD was similarly calculated

as the average percentage of events falling into this region plus three

times the standard deviation. For the determination of LLOQ, suitable

bone marrow aspirates from patients relapsing from AML MRD exhi-

biting an abnormally high CD34+/CD117+ count were identified.

These bone marrow samples were stained with the antibodies listed

in Table S1 and diluted in AML negative bone marrow samples stained

with all antibodies except CD34 and CD117. Serial 1:10 dilutions

were made based on the total leukocyte counts of each sample. A

minimum of 1 million events was acquired at each dilution. The LLOQ

was considered achieved at the dilution immediately preceding the

dilution where the coefficient of variation (CV) of the CD34+/

CD117+ percentage exceeded 30%. The experiment was performed

three times in duplicate. Note that by excluding CD34 and CD117

antibodies from the samples used to determine LOB and LOD and

from the sample AML negative bone marrow sample used to dilute

the sample for the LLOQ measurement will create an artificially clean

background that will lead to an overestimation of the LOB, LOD,

and LLOQ.

2.6 | Intra- and inter-operator variability

To examine intra-operator precision and variability, a marrow aspirate

from a patient with relapsed AML was repeatedly processed and ana-

lyzed by the same individual five times. Fifty thousand events were

collected for each repeat and the coefficients of variation of the fre-

quency of blast, T, B, and NK cells were assessed. For examining

inter-operator variability, two operators independently stained,

acquired, and analyzed in triplicate identical samples. A minimum of

950,000 events was acquired for each sample determination. This

experiment was repeated on four different samples and the coeffi-

cient of variations was computed.

2.7 | Antibody cocktail stability

An antibody cocktail was prepared by adding all fluorochrome-

conjugated antibodies into a 15-mL falcon tube containing Brilliant

Stain Buffer (BD Biosciences; Cat #563794) and stored at 4�C in the

dark. Frozen mononuclear cells were thawed, and surface stained with

the prepared antibody cocktail at T = 0, 24, 48, 72, 96, and 120 h.

The median fluorescence intensity of each marker on positive popula-

tions was monitored, graphed, and tabulated.

2.8 | Acquisition and data analysis

All cells processed using the 27-color panel were acquired on the

Cytek® Aurora (Cytek Biosciences, CA, USA) equipped with 355 nm

(20 mW, 16 channels), 405 nm (100 mW, 16 channels), 488 nm

(50 mW, 14 channels), and 638 nm (80 mW, eight channels) as the

excitation sources. The instrument was warmed up on for at least

30 min prior to use, and quality-controlled using SpectraFlo® QC Beads

(Cytek; Cat #N7-97355) to adjust laser performance based on baseline

settings, laser delay, and to align height and area scaling factors for

optimal signal resolution. This ensured consistent performance was

achieved daily. To maximize signal resolution of measured fluorescent

probes, ‘autofluorescence extraction’ was enabled by default during

sample acquisitions. Prior to analysis, the quality of the acquired and

unmixed data was examined using FCS Express v7 (De Novo Software).

Minor post-acquisition unmixing issues were manually corrected when

the biology of the markers was known and exported in FCS format. All

cells processed using the 8-color panel were acquired on a BD Canto II

flow cytometer equipped with 405 nm (30 mW), 488 nm (20 mW), and

633 nm (20 mW) lasers. BV421 and BV510 were excited by the

405 nm laser and detected using 450/50 and 510/50 nm bandpass fil-

ters; FITC, PE, and PECy7 were excited by 488 nm laser and detected

using 530/30, 585/42, and 780/60 nm bandpass filters; PerCP Cy5.5

was excited by 488 nm laser and detected using 670 nm long pass fil-

ter; APC and APCH7 were excited by 633 nm laser and detected using

660/14 and 780/60 nm bandpass filters. All results and flow cytometric

plots shown in this study were generated using WinList v10 (Verity

Software House).
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3 | RESULTS

3.1 | Signal resolution

While the high number of markers used in a single tube enabled us to

perform high-dimensional analysis, the resolution between positive

and negative populations can be compromised due to increased fluo-

rochrome spillover and steric hindrance. Stain indices were computed

to assess the performance of antibodies when used alone vs. when

used in the full panel. Our experimental results showed that the stain

indices for all antibodies were lower in the fully stained panel when

compared to cells stained with just one antibody (Figure 1).

The stain index is calculated by dividing the difference between

median fluorescence intensity (MFI) of the positive and negative

populations by two times the robust standard deviation of the nega-

tive population. The MFI of positive signals were lower and the robust

F IGURE 1 Antibody resolution in 27-color acute myeloid leukemia (AML) measurable residual disease (MRD) assay: single stained vs. fully
stained. Similar to conventional flow cytometry, the detection of 27 antibodies by full spectrum flow cytometry (FSFC) can be compromised by
the complexity of unmixing, signal resolution, and steric hinderance. To evaluate this, the performance of each antibody to resolve cell
populations was tested using the antibody alone (black histograms) vs. staining with all antibodies in the full panel (gray histograms). Stain index
(SI) was used as the primary measure to assess the separation between positive and negative signals. The evaluation of all markers, except for
CD41 Pacific blue, CD15 BV605, CD117 BV785, and CD34 APC, was performed using a ‘mononuclear gate’ gate based on FSC-A versus SSC-A.
CD41 was gated on platelets using SSC-A low vs FSC-A low, CD15 was gated on neutrophils using SSC-A hi vs. FSC-A hi), and both CD34 and
CD117 were gated on the blast region using CD45 dim versus SSC-A low. This study was repeated using bone marrow from AML MRD negative
(n = 2) and positive (n = 1) samples each performed in triplicate. A minimum of 100,000 events was acquired for each sample (average: 160,365
events)
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standard deviations of negative signals were higher in fully stained

samples (Table S3). In all instance, however, clear separation was

achieved between the negative and positive signals for each antibody

included in this panel (Figures 1 and S3).

3.2 | Identification and characterization of
immature blasts using the 27-color assay

A sequential gating strategy, as described in Figure S2, was developed

to define, the lymphocyte subsets, monocytes, granulocytes, and blast

cells. Briefly, viable, singlet, aggregate free cells were identified using

a combination of forward scatter (FSC), side scatter (SSC), and a fix-

able live dead viability dye. Normal maturing B cell precursors

(i.e., hematogones) which fall in the blast cell region and can be

CD34+ were excluded based on their CD19+ expression.

We evaluated 22 bone marrow samples. Seventeen samples

were confirmed to have residual AML using the combined DfN and

LAIP methods and five were found to be negative for residual dis-

ease based on the flow cytometric interpretation. An example of

selected bivariate flow cytometric data plots used for discriminat-

ing normal versus abnormal blasts is shown in Figure 2. The matu-

ration patterns of normal bone marrow blasts (blue events)

overlaid with those from a patient with relapsed AML (red events)

demonstrates some of the subtle differences between normal and

abnormal. All 22 samples assayed using the 27-color assay,

whether phenotypically negative (n = 5) or positive (n = 17) for

AML, were found to correlate with the 8-color assay interpreta-

tions. While all parameters were helpful for discriminating normal

from abnormal, the expression patterns of CD45, CD34, CD117,

HLADR, CD13, CD33, CD7, CD11b, and CD56 were often most

useful. In the one case of myelomonocytic leukemia, evaluation of

F IGURE 1 (Continued)
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CD4, CD14, CD64, and CD163 also facilitated the identification of

residual disease.

3.3 | Analytic accuracy of the 27-color spectral
assay

To assess the performance of our 27-color assay, a parallel study was

performed using this new method and the established 8-color

approach employed by the Clinical Flow Laboratory at Roswell Park.

The percentages of B cells, NK Cells, CD34+ blasts, CD117+ blasts,

CD34+/CD117+ blasts, and HLADR+/CD34+/CD117+ blasts were

calculated and compared between methods. An analysis based upon

the 95% confidence interval was performed using fold change, mathe-

matically derived by dividing the percentage of cells detected using

the 27-color by the 8-color methods. As shown in Table 1, our

experimental results indicated there was no evidence to suggest that

the 27-color method detected different percentages of B cells, NK

Cells, CD34+ blasts, CD117+ blasts, CD34+/CD117+ blasts, and

HLADR+/CD34+/CD117+ blasts from the established 8-color assay.

Using regression analysis, a strong correlation between the numbers

of B cells (r2 = 0.957), NK Cells (r2 = 0.938), CD34+ blasts

(r2 = 0.921), CD117+ blasts (r2 = 0.986), CD34+/CD117+ blasts

(r2 = 0.991), and HLADR+/CD34+/CD117+ blasts (r2 = 0.881) was

seen between both assays (data not shown).

3.4 | Detection sensitivity

The LOB and LOD, calculated as described in the Materials and

Methods, were 7.33 events (0.001%) and 9.24 events (0.0013%),

respectively. Using a limiting dilution assay, our results demonstrated

F IGURE 1 (Continued)
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that the single-tube 27-color method easily achieved the minimum

required detection sensitivity of 0.1% for an AML MRD evaluation

(Figure 3). As shown in Table 2, our assay was able to accurately quan-

tify blast cells at a frequency of 0.0045% with a coefficient of varia-

tion of 25.79%, which was less than our pre-defined and the generally

accepted 30% cut-off. This is an order of magnitude more sensitive

than our predicate 8-color assay, which achieved a LOD of 0.07% in a

similar series of dilution experiments.

3.5 | Intra- and inter-operator reproducibility

Three different operators who possess significant experience in han-

dling specimens for flow cytometric processing were included in this

study. For intra-operator variability, the staining was repeated five

times by a single operator. Our results demonstrated CVs of approxi-

mately 1%–4% consistently for the recovery and enumeration of all

populations studied except for monocytes, for which a slightly higher

but acceptable, CV of 14% was observed (Table 3).

For inter-operator variability, two different operators consistently

achieved low CVs for all populations measured in different samples

(Table 4). The only exception was Sample #3, where the CVs for enu-

merating total T cells, B Cells, monocytes, and NK cells were slightly

higher than for the other samples. Taken together, consistent and

reproducible enumeration was achieved for all cell populations with

CVs less than 20% with the 27-color assay. We also examined the

staining reproducibility of each population's MFI and found all of them

had a CV of less than 20% (Figure S4).

3.6 | Stability of antibody cocktail

As shown in Figure S5 and Table S4, significant changes in the MFI

for some fluorochrome antibody combinations were seen as early as

24 h after cocktail preparation. This experiment was repeated twice

with similar conclusions. Therefore, we concluded the 27-color cock-

tail needed to be prepared immediately before staining of samples.

4 | DISCUSSION

Acute myeloid leukemia is a biological and clinically heterogeneous

disease. Although advances in supportive care and prognostic risk

stratification have optimized established therapies, overall long-term

survival remains poor. The monitoring of AML MRD by MFC is a prog-

nostically important modality that has proven to be useful when

assessing remission status [9–12]. In practice, two approaches have

been utilized to evaluate AML MRD by flow cytometry: (i) the LAIP-

F IGURE 2 Discrimination of
normal vs. abnormal myeloblasts
using the 27-color
multiparametric flow cytometry
(MFC) panel. Representative data
from two bone marrow samples
received for acute myeloid
leukemia (AML) measurable
residual disease (MRD)

assessment one negative for
MRD (blue dots) and the other
positive (red dots). All events
shown fell within the blast cell
region defined as CD45 dim
versus SSC-A low and negative
for CD19. These abnormal
myeloblasts atypically express
CD5, CD7, CD11b, and are
negative to dim for HLADR. They
also demonstrate maturation
arrest based on CD38 dim
expression and have a higher
frequency. 1,502,392 and
1,157,280 cells were acquired for
the normal and abnormal
samples, respectively.
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based approach where the phenotype of immature blasts is assessed

at diagnosis and followed post-therapy and (ii) the DfN approach for

which the expression of aberrant antigens on cell surfaces are com-

pared between normal and suspected residual leukemic cells. The ELN

MRD Working Party recommends both methods be combined to best

detect AML MRD by MFC and for the identification of new aber-

rancies emerging at follow-up; in this study we used this approach.

For this combined method to be clinically useful, however, a suffi-

ciently large panel of antibodies is needed, and ideally an identical

panel should be used at diagnosis and follow up. To date, clinical

panels measuring AML MRD are typically split into multiple tubes

consisting of 8–10 colors, resulting in substantial loss in depth and

parametricity, and requiring inferential reasoning for multi-tube

interpretation.

Over the last five decades, flow cytometry has evolved from a

research technique to a routinely used laboratory tool for the

diagnosis, prognosis, and follow-up of hematopoietic neoplasms,

immunodeficiency, and a variety of other disorders [30]. The emer-

gence of FSFC and CyTOF have led to a rapid paradigm shift by

increasing the number of parameters that can be multiplexed into one

single tube, exponentially increasing the depth of information

acquired by MFC. In this study, we developed a single-tube 27-color

MFC assay for the evaluation of AML MRD by FSFC, incorporating all

recommended markers, and compared to our established 8-color

panel [18, 31]. The advantages and disadvantages of both methods

are illustrated in Table 5. By careful panel design, which required sev-

eral iterations to best match fluorochromes and antibodies, we were

able to achieve a clear separation between negative and positive sig-

nals for all antibodies measured. While clear separations between pos-

itive and negative populations were achieved, it should be noted the

staining intensities of positive signals were lowered and robust stan-

dard deviation of negative signals were higher in the fully-stained

TABLE 1 Assay concordance
between 27-color versus 8-color Acute
myeloid leukemia measurable residual
disease multiparametric flow cytometry
panel.

Cellular subset

Cell percentages (%)a

95% confidence interval#1 #2 #3 #4 #5

B cells

27-colorb 2.715 3.602 0.654 1.5 0.012

8-colorc 1.346 3.202 0.419 1.265 0.047

Fold changed 2.02 1.12 1.56 1.19 0.26 0.66–1.8

NK cells

27-color 6.987 4.612 4.479 3.116 0.381

8-color 5.464 2.316 3.264 3.317 0.385

Fold change 1.28 1.99 1.37 0.94 0.99 0.95–1.68

CD34+ blasts

27-color 0.091 15.81 0.13 0.289 0.308

8-color 0.196 9.598 0.203 1.195 0.522

Fold change 0.46 1.65 0.64 0.24 0.59 0.24–1.19

CD117+ blasts

27-color 0.08 13.774 0.162 0.105 0.295

8-color 0.191 9.594 0.216 0.146 0.469

Fold change 0.42 1.44 0.75 0.72 0.63 0.45–1.13

CD34+/CD117+

27-color 0.063 13.343 0.084 0.032 0.196

8-color 0.070 8.976 0.076 0.023 0.227

Fold change 0.90 1.49 1.11 1.39 0.86 0.9–1.4

HLADR+/CD34+/CD117+

27-color 0.036 0.406 0.063 0.02 0.139

8-color 0.062 0.232 0.071 0.019 0.191

Fold change 0.58 1.75 0.89 1.05 0.73 0.6–1.4

aTotal number of enumerated CD45+ cells were used as the denominator for these calculations; five

bone marrow samples were evaluated; an average of 1.30 � 106 ± 0.41 � 106 cells was acquired for

each sample repeat (range: 0.72 � 106–2.00 � 106 cells).
bSee Table S1 for a description of the antibodies used in the panel.
cSee Table S2 for a description of antibodies and combination used.
dFold change: calculated by dividing the percentage of cells enumerated using the 27-color panel by the

percentage of cells enumerated using the 8-color panel.
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samples, corroborating the finding published by Park et al. that the

utilization of high number of parameters can indeed compromise sig-

nal resolution and thus careful panel design and validation are

required [32].

We compared the performance of this novel assay against our

established 8-color AML panel using clinical samples from patients

with suspected AML MRD. We found high quantitative agreement

between both methods. More information could be retrieved using

F IGURE 3 Empirical lower
limit of quantification (LLOQ)
determination of the 27-color
FSFC method for acute myeloid
leukemia (AML) measurable
residual disease (MRD)
evaluation. A bone marrow
aspirate from an AML patient
was surface stained with the

antibodies described in Table S1.
This fully stained sample was
serially diluted 10-fold in
replicate with cells stained with
all surface antibodies except
CD34 and CD117. The LLOQ
was defined as the highest
dilution to achieve a CV of less
than 30%. A minimum of
1,232,424 events was acquired
for each sample (average:
1,595,059 events). The
sensitivity of the assay was
calculated by dividing the
number of events falling into the
region used to define CD34,
CD117 dual positive myeloblasts
by the total CD45 positive
leukocytes. (A) Representative
sequential dilution dotplots.
(B) Plot of dilution sensitivity;
results from this study (solid
line), theoretical sensitivity
(dotted line). Error bars
represent the standard deviation
of the repeated measurements;
the experiment was performed
in duplicate using three different
patient samples.
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our method as opposed to the traditional approach, increasing our

confidence in the final interpretation. Presently, most laboratories

performing AML MRD by MFC utilize panels recommended by the

Bethesda Consensus Group and the ELN [18, 31]. The redundancy of

antibodies such as CD34 and CD45 required for multiple tubes results

in higher reagents cost. From the perspective of a clinical laboratory,

the acquisition of multiple tubes also increases the time needed to

stain and acquire the cells, directly increasing assay costs and reducing

instrument availability. These issues can be addressed by merging

multiple tubes into one.

A disadvantage of the single-tube 27 antibody approach is that

the analysis can be more difficult than the traditional 8-color panel. In

addition, if a critical antibody such CD34 or CD45 is mistakenly omit-

ted in the 27-color single-tube approach, the analysis and outcome

can be severely compromised. Whereas in the multi-tube approach,

useful information can often still be retrieved using inferential reason-

ing. A degree of redundancy across panels can also provide additional

certainty and serve as an internal quality check. Furthermore, as the

number of analytes required per tube increases, pipetting inaccuracy

can also greatly affect the quality of the results. We tested the intra-

and inter-operator variability by having technicians independently

process and analyze identical clinical samples. We found that a low

percent CV was consistently achieved, indicating the assay is highly

reproducible within and among technicians. To further improve the

assay consistency, we examined the possibility of using a refrigerated

antibody cocktail. Unfortunately, we found significant fluctuations

over time with the staining performance of the cocktail and thus rec-

ommend that it be made just prior to staining until improvements in

fluorochrome stability and their interactions are developed.

In this study bone marrow aspirates from patients relapsing from

AML MRD were diluted with bone marrow samples from patients

with no detectable disease that had been stained using all the anti-

bodies in this panel except CD34 and CD117. The experimentally

determined LOD of our assay using this approach was 0.0013%. Not

all samples, especially those from patients with myelomonocytic leu-

kemia, would be as easy to identify as in this model system. Neverthe-

less, this is well below the ELN MRD Working Party threshold

recommendation of 0.1% (after excluding debris and CD45 negative

cells) that should be achieved for a MFC assessment of AML MRD.

The group, however, did acknowledge that levels below 0.1% may still

be consistent with residual leukemia, and several studies have shown

prognostic significance of MRD levels below 0.1% [33]. About 25% of

individuals who achieve an MRD-negative status relapse [34]. One of

the reasons can be attributed to the poor quality of interrogated bone

marrow samples, for which excessive contamination of peripheral

blood can hamper the sensitivity of the flow-based technique to track

MRD. Our single-tube 27-color approach provides a solution in two

ways. First, the elimination of multiple tubes allows all of the sample

TABLE 2 Detection sensitivity of single-tube 27 color assay for the evaluation of Acute myeloid leukemia measurable residual disease.

Tube # Dilution

Number of CD34+/CD117+ blast Percentage of CD34+/CD117+ blast, %

Events Estimated CV (%)a Calculated CV (%) Percentage (%) Calculated CV (%)

Blank Blank 5 44.72 28.28 0.0006 –

1 Neat 601,332 0.13 4.45 74.4709 4.97

2 1:101 46,731 0.46 28.23 8.4832 11.85

3 1:102 6034 1.29 22.59 1.2495 13.15

4 1:103 706 3.76 29.05 0.1685 3.28

5 1:104 94 10.34 5.56 0.0210 3.39

6 1:105 24 20.63 22.11 0.0045 25.79

Note: Experiment performed in duplicate using three different patient samples; an average of 1.59 � 106 ± 0.31 � 106 cells was acquired for each sample

repeat (range: 1.23 � 106–2.00 � 106 cells).
aEstimated %CV = square root of the number of CD34+/CD117+ blasts collected divided by the number of blasts.

TABLE 3 Intra-operator variability.

Percentage of cell (%)

Repeat #

Mean SD CV (%)1 2 3 4 5

CD3 T cells 43.98 40.71 41.42 41.03 43.07 42.04 1.41 3.35

B cells 6.91 7.01 6.68 6.82 6.71 6.83 0.14 2.05

Hematogones 2.80 3.04 2.87 3.03 2.89 2.93 0.11 3.76

Monocytes 2.69 3.47 3.56 3.33 2.65 3.14 0.44 14.01

CD34+/CD117+ blasts 25.97 25.95 25.69 25.92 25.28 25.76 0.29 1.13

NK cells 9.63 9.52 9.62 9.77 10.29 9.77 0.31 3.17

Note: Experiment was repeated five times using one patient sample; 50,000 events were collected for

each repeat.
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be dedicated to a single tube, increasing the likelihood that enough

events can be collected to achieve at least a 0.1% LOD, and if desired,

a higher number of cells can be collected to improve detection sensi-

tivity. Secondly, the degree of hemodilution can be assessed by incor-

porating markers used for defining immune cells that should only be

found in bone marrow. In this regard, the presence of mast cells

(bright for CD117) and hematogones (dim for CD45, CD38, CD10 and

positive for CD19), and the ratio of immature/mature neutrophils

based on CD16 intensity can be used [35, 36]. This is not easily

achievable in traditional 8–10 color methods without adding addi-

tional tubes. Regardless, we recommend a separate study be con-

ducted to standardize cut-off values for indicators of hemodilution

used to assess sample adequacy.

Taken together, we propose that our single-tube 27 color assay

is a suitable alternative to traditional multi-tube approaches for

assessing AML MRD by MFC. This method is reproducible, sensitive,

and will theoretically permit the direct identification and apprecia-

tion of the immunophenotypic drift often seen in relapsed AML

MRD. The developmental works described in this manuscript should

serve as a template for future validation efforts required for imple-

mentation in a clinical setting. To completely validate the assay, a

higher number of AML MRD positive and negative samples need to

be tested and correlated with the predicate assay. This will help gen-

erate a reference library defining normal antigen expression patterns

and those seen in patients receiving treatment. For establishing

detection sensitivity, investigators should consider using normal or

staging bone marrow as the dilution matrix for generating LOB. Fur-

thermore, the longevity of antibody cocktails should be tested as

stable fluorochromes are developed and dried-down technologies

become more mature in the future. This will greatly improve turn-

around times by enabling faster sample processing and reduce over-

head costs.

TABLE 4 Inter-operator variability.

Cellular subsetsa

Replicateb

Average (%) SD (%) CV (%)

Operator 1 Operator 2

1 2 1 2

CD3 T cells

Sample #1 53.05 52.97 53.39 53.65 53.27 0.31 0.58

Sample #2 81.48 81.76 79.70 80.71 80.91 0.92 1.14

Sample #3 4.69 5.03 5.69 5.86 5.32 0.55 10.34

Sample #4 46.57 48.54 45.80 43.80 46.18 1.96 4.24

B cells

Sample #1 0.82 0.93 0.87 0.88 0.88 0.04 4.57

Sample #2 1.67 1.67 1.65 1.58 1.64 0.04 2.44

Sample #3 0.47 0.47 0.37 0.37 0.42 0.06 14.25

Sample #4 1.14 1.15 1.18 1.27 1.19 0.06 5.05

Monocytes

Sample #1 2.52 2.75 2.20 2.47 2.49 0.22 8.85

Sample #2 3.98 3.94 4.25 4.41 4.15 0.23 5.55

Sample #3 3.36 2.57 2.12 2.05 2.53 0.60 23.75

Sample #4 32.25 31.31 33.86 34.38 32.95 1.42 4.31

CD34+/CD117+ blasts (MRD level)

Sample #1 1.81 1.96 2.17 2.01 1.99 0.15 7.53

Sample #2 1.44 1.45 1.49 1.44 1.46 0.03 2.06

Sample #3 41.90 41.86 41.87 42.02 41.91 0.07 0.17

Sample #4 1.89 1.90 1.86 2.10 1.94 0.11 5.67

NK cells

Sample #1 5.54 5.42 5.21 5.24 5.35 0.15 2.80

Sample #2 4.81 4.87 4.84 4.58 4.78 0.13 2.72

Sample #3 7.86 6.93 6.55 6.61 6.99 0.60 8.59

Sample #4 5.01 5.15 5.09 5.12 5.09 0.06 1.18

aFour acute myeloid leukemia samples were used; one with overt disease and three with measurable

residual disease.
bAn average of 1.33 � 106 ± 0.38 � 106 cells was acquired for each sample repeat (range: 0.97 � 106–
2.00 � 106 cells).
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Traditionally, an analyst must refer to bivariate data plots gener-

ated from multiple 8–12 color tubes and assumptions, or inferential

reasoning must be applied to decide the final phenotype of the abnor-

mal blast population. Our 27-color panel circumvents this issue by

simultaneously assessing all markers, potentially increasing analyst's

confidence in recognizing abnormal blasts. It also provides the flexibil-

ity to incorporate newer markers including those that are currently

targeted by therapy. With the development of supervised and auto-

mated analysis programs that offer superior visualization options for

high parameter flow cytometric data, such as Flow Self Organizing

Maps (FlowSOM), Gemstones, and Uniform Manifold Approximation

and Projection (UMAP) for dimension reduction, we anticipate this

panel will provide useful information to facilitate clinical interpretation

of the flow cytometry data and help identify new, targetable antigens.
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Abstract

Barcoded flow cytometry is a multiplexing technique allowing for the simultaneous

acquisition of cells from different donors or experimental conditions in a high-

throughput manner. This approach allows to synchronize acquisition of samples and

reduce variance introduced through the operator or technical platform. However, to

date, only very few flow cytometry barcoding protocols have been developed, which

often suffer from technical limitations. Here, we developed a novel barcoding proto-

col for a full-spectrum flow cytometry platform. We developed a 21-color immuno-

phenotyping assay for up to 20 different samples analyzed simultaneously with

comparable variance between repeated single-tube acquisition and postde-mul-

tiplexing. Barcoding offers great potential in parallelizing the analysis of complex cell

populations such as peripheral blood mononuclear cells (PBMCs). Consequently, we

assessed the performance of our method in situations where PBMCs were chal-

lenged with phytohaemagglutinin (PHA), a strong mitogen and broad activator of B

cells and T cells, and superantigen Staphylococcus enterotoxin B (SEB) that has been

reported to induce polyclonal T cell activation. PBMCs were either barcoded before

pooled challenge or challenged individually pre-barcoding. Our final workflow

included pooled immunophenotyping followed by machine learning aided single-cell

data analysis and enabled us to identify robust PHA and SEB mode of action related

phenotypic changes in PBMC immune cell lineages. Conclusively, we present a novel

technique allowing the barcoded acquisition and analysis of PBMCs from up to 20 dif-

ferent donors and present a valid basis for the future development of complex immu-

nophenotyping protocols.

1 | INTRODUCTION

With the increasingly routine use of high-parameter flow cytometry,

complex immunophenotyping protocols have been designed which

allow for hitherto unparalleled complexity in immune cell characteriza-

tion of both lymphoid and myeloid lineages [1–5]. With the introduc-

tion of full spectrum flow cytometry, panels encompassing 40 and

more parameters have been described for the in-depth characteriza-

tion of peripheral blood mononuclear cell (PBMC) lineages [6–8]. Pre-

viously, such granularity could only be achieved by cytometry by time

of flight (CyTOF) protocols which employ heavy metals and mass

detectors for cell analysis [9]. As a consequence, the reporting of

potentially well over several hundred results per experiment becomes

possible. This means that flow cytometry data analysis is becoming

more and more difficult and dependent on machine learning algo-

rithms to make sense of the vast amount of single-cell information

retrieved [10–12]. Importantly, high-parameter immunophenotyping

protocols with the assessment of highly complex cell lineages with dif-

ferent abundances make best practice staining and sample preparation

procedures critically important to minimize operator- and platform-

induced analysis bias [13]. This is critical in longitudinal sample analy-

sis, for instance in bioanalytical [14] or pharmacodynamics
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(PD) biomarker development in clinical trials [15]. Here, the same

patient's immune cells need to be monitored repeatedly over a long

period. Even in a batch analysis situation, for instance with frozen

PBMC samples, optimal staining efficiency through the use of identi-

cal flow cytometry master mixes and well aligned controls (such as

fluorescence-minus one, FMO, or fluorescence-minus many controls,

FMx) are essential.

Some of these challenges can be mitigated by employing mul-

tiplexing strategies, which allow for the simultaneous acquisition of

samples, for instance from several donors or several analysis time

points. This has the potential to greatly reduce operator- and

platform-induced bias, maximize assay efficacy through the use of

identical staining mixes and may also lead to reduced overall antibody

consumption. The CyTOF community has been a pioneer in the field

by developing routine and reliable barcoding protocols. A frequently

used approach relies on barcoding individual (live or fixed) PBMC sam-

ples with a unique combination of anti-CD45 antibodies [16–19] or

other constitutively expressed cell surface markers such as CD298

and beta-2-microglobulin [20]. Through combinatorial mathematics,

many samples can thus be acquired at the same time [21]. For exam-

ple, if seven anti-CD45 antibodies are available for barcoding, three of

which are used to co-label PBMCs of one specific donor/condition,

this allows for up to 35 unique barcoding combinations (“7-choose-
3”). De-barcoding then happens either manually through Boolean gat-

ing or through the use of specialized cytometry analysis scripts or

software [22–24]. However, CyTOF is far less routinely accessible to

the immunology community than flow cytometry due to higher cost,

challenging reagent preparation protocols and potential unavailability

of experienced operators especially in the clinical PD biomarker set-

ting. In addition, fluorescence-based flow cytometry allows for the

analysis of live PBMCs with potential subsequent cell sorting.

In the past, several multiplexing protocols for use in conventional

flow cytometry have been proposed. A frequently used strategy relies

on the serial dilution of label retaining intracellular dyes [25–27]. Con-

ceptually, this may have several limitations since only few serial dilu-

tions are feasible per dye, some dyes may spill into other cells and

finally, cells with different autofluorescent properties or highly differ-

ential cytoplasmic complexity may not resolve correctly [28]. Some of

these limitations have been addressed using succininidyl ester-based

dyes, which covalently label intracellular proteins. This allows for mul-

tiplexed analysis of up to n = 96 PBMC- or cell-line-derived speci-

mens [24, 25, 29, 30] in parallel using up to three intracellular dyes.

Typical applications include, for instance, combined low-parameter

immunophenotyping [29] or timed phosphor-protein signaling studies

[24]. Critically, these protocols require prior cell fixation and / or mag-

netic cell sorting and so far have not been combined with high-

parameter immunophenotyping. A further conceptual limitation may

be that intracellular proteins are covalently labeled with fluorescent

dyes, which may in theory impact the staining efficiency of certain

detection antibodies. Antibody-tagged barcoding protocols have also

been introduced for polychromatic flow cytometers. They combine

cell lineage antibodies (such as anti-CD4 or anti-CD8) tagged to

different fluorochromes [31]. However, these strategies only allow for

the discrimination of select cell lineages in a multiplexed manner thus

potentially missing other sample specific information [31]. In addition,

complex barcoding protocols using conventional polychromatic flow

cytometers with a limited number of detectors might suffer from

spreading error (SE) affecting de-barcoding [8, 32].

A possible technological improvement is full spectrum flow cyto-

metry, where many fluorochromes can be analyzed simultaneously

due to enhanced spectral fluorochrome unmixing thus potentially

reducing SE [33]. We were intrigued by the potential of live-PBMC

barcoding on a full spectrum flow cytometer using anti-CD45 tagging

based barcoding protocols as pioneered by CyTOF. In the present

study, we sought to develop a novel barcoding protocol employing

CD45-mediated fluorochrome tagging, followed by a subsequent

immunophenotyping protocol. We assessed different CD45 barcoding

combinations eventually resulting in a 6-choose-3 approach for the

simultaneous analysis of up to 20 individual PBMC samples. During its

establishment, we assessed assay parameters such as barcode-

induced artifacts and individual sample debarcoding efficiency as well

as potential batch effects and compared the precision of multiplexed

samples to sequentially acquired samples on the same cytometer. An

application of our protocol could be the assessment of complex

immunophenotypes at the population level in PD biomarker develop-

ment or mode of action (MoA) studies in the development of immuno-

modulators. Examples include phytohaemagglutinin (PHA) [34] and

Staphylococcus enterotoxin B (SEB) mediated PBMC activation. While

PHA, a lectin, is a broader PBMC activator with strong effects on T

cells that has also occasionally been reported to affect B cell activa-

tion [35–37], SEB is a more selective T cell activator [38]. PHA is

often used as a mitogen, while SEB has been studied with regards to

CD4+ T cell activation and the release of pro-inflammatory cytokines.

However, both in vitro stimuli lack exhaustive characterization of

activation-induced phenotypic changes. Consequently, we assessed

the performance of our barcoding and immunophenotyping protocol

in combination with dimensionality reduction (optSNE; t-stochastic

neighbor embedding) [39] and automated clustering (FlowSOM)

approaches. We first designed an experiment where previously

barcoded PBMCs from n = 10 donors were pooled and simulta-

neously challenged with PHA revealing broad changes to the abun-

dance of immune cell subsets. Finally, by challenging PBMCs from

n = 20 donors separately with SEB, we assessed T cell activation in

detail identifying MoA related changes in the abundance of specific T

cell subsets [40].

2 | MATERIALS AND METHODS

2.1 | Ethics statement

Human blood samples from healthy volunteers were collected under

the Blood Donation for Research Purposes program at F. Hoffmann-

La Roche, Basel, Switzerland.
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2.2 | Preparation of PBMCs from healthy donor
blood

As described previously [41], healthy donor blood was collected in

sodium heparin (NaHep) tubes (BD), diluted with PBS (Gibco, 1:1) and

transferred to Leucosep tubes (Greiner Bio-One) pre-filled with Ficoll-

Paque Plus (GE Healthcare). Tubes were centrifuged without brake

(1000 g, 10 min, RT). Nonsedimented leukocytes were transferred to

a fresh 50 ml tube (Falcon) and washed twice with PBS. PBMCs were

routinely cultured at 37�C in R-10 medium (RPMI 1640, ATCC modifi-

cation (Gibco), + 1% (v/V) penicillin/streptomycin (Thermo Fisher)

and 10% (v/V) FBS (Life Technologies)).

2.3 | Flow cytometry equipment and routine
analysis

Unless stated otherwise, the following cytometer was used for mul-

tiplexing experiments: Cytek Aurora, 4 L (355 nm, 405 nm, 488 nm

and 640 nm), 16UV, 16 V, 14B, 8R. Single-stain control samples for

unmixing were obtained by pooling PBMCs from several donors

where applicable including CD3-CD28 spiked controls (48 h incuba-

tion) for activation markers. Postacquisition, per tube, individual sam-

ples were de-multiplexed through Boolean gating. The following

gating strategy was applied (here: sample labeled with CD45-FITC

and CD45-PE, 5-choose-2 approach): Sample = CD45-FITC+ AND

CD45-PE+ NOT CD45-BUV395+ NOT CD45-BV570+ NOT

CD45-AF532+ etc. PBMC centrifugation was always done at 400 g at

room temperature for 4 min.

2.4 | Multiplexing live PBMCs

2.4.1 | Comparing single acquisition of PBMCs with
barcoded acquisition of n = 10 replicates (5-choose-2)

The 2.5 � 106 PBMCs from n = 3 healthy donors were prepared of

which 10� 250,000 PBMCs were transferred to individual 5 ml

round-bottom tubes (Falcon) and washed 1� with 1 ml of PBS for

CD45 barcoding. We used a 5-choose-2 approach to label 10 individ-

ual PBMC replicates per donor (see supplementary methods). In addi-

tion, all PBMCs were labeled with a common CD45 antibody

(CD45-AF532). PBMCs were incubated in 50 μL of barcoding mix

(PBS + 10% (v/V) Brilliant Stain Buffer (BD Biosciences), see supple-

mentary methods) for 25 min at 4�C. Alternatively, n = 3 tubes of

PBMCs /donor were prepared for individual analysis (no multiplexing);

these cells were exclusively labeled with CD45-AF532. All cells were

then washed 2� with 1 ml of PBS. Barcoded cells were resuspended

in 100 μL of PBS. All cells (barcoded or nonbarcoded) were then incu-

bated with the immunophenotyping mix (100 μL for single-sample

tubes, 500 μL for barcoded and pooled samples): CD3-BV711,

CD4-BUV805, CD8-BUV737, CD19-PECy5, CD56-APC-R700,

CD14-PEDazzle594, CD25-APC, CD127-PE, CD197-PE-Cy7,

CD45RA-BV510, PD-1-BV421. The master mix contained PBS + 10%

(v/V) Brilliant Stain Buffer +10% (v/V) FcR Blocking Reagent, human

(Miltenyi). Cells were incubated at 4�C for 30 min, then washed 2�
with 2 ml of PBS, resuspended in 500 μL of PBS and analyzed at the

cytometer. Replicate stains were then compared to n = 3 individually

stained samples for variance and overall resolution.

2.4.2 | Assessing CD45 barcoding mediated batch
effects

The 250,000 PBMCs from n = 3 healthy donors (A, B, and C) were

transferred to individual 5 ml round-bottom tubes and washed 1�
with 1 ml of PBS for CD45 barcoding using a 5-choose-2 approach to

label 9 PBMC replicates per donor. In addition, all PBMCs were

labeled with a common CD45 antibody (CD45-AF532). PBMCs were

incubated in 50 μL of barcoding mix (PBS + 10% (v/V) Brilliant Stain

Buffer, see supplementary methods) for 25 min at 4�C. Cells were

then washed 2� with 1 ml of PBS and resuspended in 100 μL of PBS

and split in two tubes per replicate. Subsequently, n = 9 samples from

donors A, B and C were then pooled as follows: Tube 1, samples A1

B2 C3 A4 B5 C6 A7 B8 C9; tube 2, samples B1 C2 A3 B4 C5 A6 B7

C8 A9; tube 3, samples C1 A2 B3 C4 A5 B6 C7 A8 B9. This resulted

in n = 3 tubes (per FM control vs. full immunophenotyping stain) with

barcoded cells, which were sedimented and incubated with 500 μL

immunophenotyping master mix containing either the lineage cocktail

only (for FM controls: CD3-Bv711, CD4-BUV805, CD8-BUV737,

CD19-PECy5, CD56-APC-R700, CD14-PE-Dazzle594, CD25-APC,

CD127-PE, CD197-PE-Cy7, CD45RA-BV510, HLA-DR-BUV496) or

the lineage cocktail plus activation markers (PD-1-BV421,

LAG3-BV785, CD103-BV650). The master mix contained PBS + 10%

(v/V) Brilliant Stain Buffer +10%(v/V) FcR Blocking Reagent. Cells

were incubated at 4�C for 30 min, then washed 2� with 2 ml of PBS,

resuspended in 500 μL of PBS and analyzed at the cytometer. Both

the tube effect as well as the donor effect on resolution and variance

were assessed.

2.4.3 | Challenging barcoded PBMCs from n = 10
different donors with PHA

For the comparison of pooled naïve and activated barcoded PBMCs,

2 � 106 PBMCs from n = 10 healthy donors were barcoded in a

donor-specific way in a 5 ml tube on ice for 25 min with a 5-choose-2

approach in 100 μL of barcoding mix (PBS + 10%(v/V) Brilliant Stain

Buffer, see supplementary methods). Barcoded cells were then

washed twice with 2 ml of PBS, resuspended in 1 ml of R-10 per

donor, pooled and split in 2 x 5 ml batches which were subsequently

seeded in a 6-well cell culture plate (Falcon). One fraction was subse-

quently challenged with phytohaemagglutinin (PHA, 2 μg/ml; Thermo-

Fisher, #R30852801). After 48 h in culture, pooled PBMCs (naïve or

challenged) were washed 2� with 10 ml of PBS in a 50 ml tube and

again transferred in two fractions per initial treatment condition (FMx
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vs. full stain) to 5 ml tubes. For flow cytometric analysis, the previ-

ously barcoded cells were incubated with 500 μL immunophenotyping

master mix containing either the lineage cocktail only (for

fluorescence-minus many [FMx] controls: live-dead UV blue;

CD56-APC-R700, CD14-AF647, CD19-FITC, CD3-V450, CD197-PE-

Cy7, CD25-APC, CD127-APC-Cy7, CD45RA-BV510, CD8-BUV496,

CD4-BUV805, CD28-BUV563) or the lineage cocktail plus activation

markers (CD223-PE-CF594, CD103 BV480, CD279-BV650,

CD137-BV711, CD39-BV750, CD366-BV786, CD278-BUV661,

CD154-BV421). The master mix contained PBS + 10% (v/V) Brilliant

Stain Buffer +10% (v/V) FcR Blocking Reagent. Cells were incubated

at 4�C for 30 min, washed 2� with 2 ml of PBS, resuspended in

300 μL of PBS and analyzed at the cytometer (here: Cytek Aurora,

5 L, 355 nm, 405 nm, 488 nm, 561 nm and 640 nm).

2.4.4 | Assessing PBMCs from n = 20 different
donors post-SEB challenge

Per condition, 250,000 PBMCs from n = 20 healthy donors were pre-

pared and cultured in 24-well plates (Falcon, 1 ml of R-10 medium)

in vitro for 48 h either naïve or with SEB (Sigma, 1.0 μg/ml). Subse-

quently, cells were transferred to individual 5 ml round-bottom tubes

and washed 1� with 1 ml of PBS for subsequent CD45 barcoding.

We used a 6-choose-3 approach. Individual naïve and activated

PBMCs from the same donor received the same barcode in separate

tubes (see supplementary methods) and were incubated in 50 μL of

barcoding mix (PBS + 10% (v/V) Brilliant Stain Buffer) for 25 min at

4�C. Cells were then washed 2� with 1 ml of PBS, resuspended in

100 μL of PBS and split in two tubes per treatment condition (two

tubes/donor activated, two tubes/donor treatment naïve). Samples

from all 20 donors were then pooled accordingly resulting in four

tubes with barcoded cells, which were sedimented and incubated with

500 μL immunophenotyping master mix as described above con-

taining either the lineage cocktail only (FMx) or the lineage cocktail

plus activation markers (full stain). The only exception to the PHA

challenge experiment is that we swapped CD19-FITC with

CD19-BUV737 and included CD134-BV605 (full master mix only).

Cells were incubated at 4�C for 30 min, then washed 2� with 2 ml of

PBS, resuspended in 500 μL of PBS and analyzed at the cytometer.

2.5 | Flow cytometry gating and analysis of FCS
files (manual gating, optSNE and FlowSOM) and
statistical considerations

FCS files were exported using Spectro Flow (Cytek) and analyzed in

FlowJo (BD) for single-cells (FSC-A vs. FSC-H), where applicable live

(live-dead�), CD45+. Single samples were extracted using the Boolean

de-unmixing strategy as defined above. For further analysis including

manual gating, data clustering and dimensionality analyses, Omiq

(Omiq, Inc., Santa Clara, SA; www.omiq.ai) was applied for individual

datasets. Corresponding FCS files were de-barcoded as described

above. The following parameters were used for optSNE dimensional-

ity reduction on concatenations of 10,000 events/sample: Max itera-

tions = 1000, optSNE end = 5000, perplexity = 30, theta = 0.5,

random seed = 123, verbosity = 25. The following parameters were

used for FlowSOM clustering: xdim / ydim = 10, rlen = 10, consensus

metaclustering on k = 14, 17 and 20; random seed = 123. For ana-

lyses of the results obtained in Omiq, a custom R (version 4.1) script

was written. Graphs were generated using ggplot 2. Where applicable,

paired PBMC samples were analyzed using paired t-tests with

corrections for multiple testing (BH) using the R rstatix package.

The coefficient of variation (CV) was calculated as follows:

CV = (SD/x̄) * 100, whereby x̄ = mean result of median fluorescence

intensity (MFI) or abundance (%) of a population, SD = standard devi-

ation of the individual result. CVs ≤20% were considered acceptable.

2.6 | Flow cytometry data repository

Data are publicly available at the FlowRepository (ID: FR-FCM-Z4KK),

URL: https://flowrepository.org/id/FR-FCM-Z4KK.

3 | RESULTS

3.1 | Anti-CD45 barcoding does not introduce
major batch effects and allows for the analysis of
complex live PBMCs populations

We reasoned that the multiplexed analysis of human leukocyte sub-

sets would best work in a human PBMC setting, for which this

approach is routinely used in mass cytometry (CyTOF) [42]. Given lim-

ited number of fluorochromes sufficiently different in their emission

and excitation spectra and the number of matching detectors available

on current high-end flow cytometers, we reasoned that a 5-choose-2

(max. 10 individual samples) or 6-choose-3 (max. 20 individual sam-

ples) barcoding approach would allow for the simultaneous acquisition

of a useful amount of individual samples while still facilitating complex

immunophenotyping. For an initial experiment, we sought to develop

a 10-plex barcoding panel for the Cytek Aurora using a 5-choose-2

approach followed by an 11-color immunophenotyping panel

(Figure 1A and Supplementary Figure 1A). In this experiment, we

assessed how PBMC lineages as well as T cell subsets from the same

donor would compare in repeatedly acquired identical single-stains

(unicates, serial acquisition of individually stained PBMCs in individual

tubes) versus 10 simultaneously acquired barcoded samples (barcoded

replicates pooled in one tube). Freshly prepared PBMCs where either

split into three tubes and labeled with a common single anti-CD45

antibody followed by the immunophenotyping panel, or first labeled

with unique barcodes (n = 10), mixed, and then incubated with the

common immunophenotyping master mix in one tube postpooling

(Figure 1A). After debarcoding, samples were compared to the individ-

ually stained samples with regards to cell lineages comparability. Sam-

ple debarcoding efficiency was highly comparable (average efficiency
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Barcoding scheme (5−choose−2)Workflow schematic(A)

(B) (C)

(D)

(E)

F IGURE 1 CD45 barcoding allows for PBMC lineage resolution comparable to single-tube acquisition and does not introduce artifacts.
(A) Barcoding schematic. Left: Illustration of barcoding workflow (CD45 tags; exemplary 5-choose 2 approach) for the analysis of n = 10
individual PBMC samples or n = 3 PBMC samples from the same donor labeled and acquired individually (no barcoding). Post-CD45 labelling,
cells were labeled with the identical immunophenotyping antibody mix. Right: Pipetting schematic for the 5-choose-2 barcoding approach.
(B) The debarcoding efficiency of CD45+ barcoded unique samples post-Boolean gating was compared for a representative 5-choose-2
experiment. (C) PBMCs from the same donor were barcoded (5-choose-3, n = 10) and postunmixing compared to single-tube acquisition (n = 3).
The frequency of main PBMC lineages and PD-1+ T cells was assessed via manual gating. Tem, effector memory T cells; Tcm, central memory T
cells; Temra, terminally differentiated T cells. (D) Schematic of the batch effect experiment to compare 3 different PBMC donors (A, B, C) split
across 3 tubes [1–3] with unique barcodes each. A, B and C were each uniquely barcoded (n = 9, 5-choose-2) and then split tubes 1, 2 or 3. Each
tube contained 9 unique mixes from 3 different donors (1 – ABC, 2 – BCA, 3 – CAB). (E) Postdebarcoding, recovered cells were analyzed by
manual gating. Cell populations from A, B and C were compared (donor comparison) as well as overall populations present in each tube 1, 2 or
3 (tube comparison). Tem, effector memory T cells; Tcm, central memory T cells; Temra, terminally differentiated T cells; DN T, CD4�CD8� T
cells; monos, monocytes [Color figure can be viewed at wileyonlinelibrary.com]
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9.0% ± 1.6%). In this protocol, all samples (unicates as well as repli-

cates) were stained with a common, identical anti-CD45 antibody.

The comparison of the abundance of CD45+ cell lineages among de-

barcoded replicates (n = 10) with separately acquired CD45+ unicates

(n = 3) revealed that there were no statistically significant differences

between major PBMC lineages (CD19+ B cells, CD14+ monocytes,

CD56+ NK cells and CD3+ T cells, Figure 1C, Supplementary

Figure 1B and Supplementary Table 1). In addition, broad T cell

populations (CD4+, CD8+ single-positive and CD4�CD8� double-

negative [DN] T cells) and subsets thereof were compared. This

included regulatory T cells (Treg, CD3+ CD4+ CD25high CD127�),

naïve T cells (CD197+ CD45RA+) as well as central memory (Tcm,

CD3+ CD197+ CD45RA�), effector memory (Tem, CD3+ CD197�

CD45RA�) and terminally differentiated (Temra, CD3+ CD197�

CD45RA+) T cells. None of these subsets from the multiplexed acqui-

sition was statistically significantly different from individually acquired

samples (unicates). Overall, the numbers were comparable.

We next assessed if the method might suffer from poorer popula-

tion separation if PBMCs from different donors were simultaneously

acquired (for instance, due to donor-specific autofluorescence, cell

activation status and consequently donor-specific differences in SE).

Furthermore, it was unclear if splitting samples from several different

donors into different tubes followed by successive acquisition would

impact the overall performance of the panel though the introduction

of additional batch effects. Consequently, we designed an experiment

where PBMCs from three individual donors (termed A, B and C) were

individually barcoded with n = 9 different CD45 tags (using the

above-described 5-choose-2 approach). Subsequently, these PBMCs

were mixed equally in such a way that unique barcodes referenced

n = 3 individually labeled PBMC samples from each of the three

donors in three individual tubes (tube 1, ABCABCABC vs. tube

2, BCABCABCA vs. tube 3, CABCABCAB). After pooling the donors in

three individual tubes, the cell suspensions were labeled with a com-

mon lineage staining mix followed by acquisition (Figure 1D).

Postdebarcoding, n = 9 samples of each of the n = 3 donors were

assessed for main PBMC subset abundance (intra-donor comparison).

The pooled PBMC composition of the three tubes (each containing

three samples of each donor) was also compared (inter-tube compari-

son, Figure 1E). This analysis suggested that we detected donor-

specific statistically significant differences between CD14+ mono-

cytes, CD4�CD8� double-negative (DN) CD3+ T cells and CD3+

CD197+ CD45RA� Tcm cells, while there was no statistically signifi-

cant difference between the same subsets in each tube as expected

for a repeated analysis of pooled donors split over several tubes

(Supplementary Table 2).

Together, these experiments suggested that anti-CD45 fluores-

cent cell labelling of n = 10 live PBMCs does not significantly impact

the identification of PBMC lineages. As a next step, we decided to

develop a more comprehensive immunophenotyping protocol for

detailed T cell subset analysis and designed a 6-choose-3 anti-CD45

barcoding approach (Supplementary Figure 2A). Pooled PBMCs from

the same donor were challenged with an antibody mix allowing to dis-

criminate between main PBMC subsets, specialized T cell subsets and

several cell surface activation markers (CD28, CD278, CD279,

CD223, CD134, CD137 and CD154). After multiplexed acquisition of

n = 20 identical PBMC samples, the individual debarcoding efficiency

was again highly efficient (4.78% ± 0.38%) (Figure 2A). We applied

manual gating on the debarcoded samples (Supplementary Figure 2B)

followed by optSNE dimensionality reduction (Figure 2B). This

suggested that there was a very reliable debarcoding efficiency of the

major PBMC lineages (B cells, monocytes, NK cells and NK-T cells). T

cell subsets such as Treg, T naïve, Tcm and Tem as well as Temra

CD4+ and CD8+ T cells were also faithfully identified (Figure 2B-D

and Supplementary Table 3). Importantly, the variance (%CV) of each

of the populations we assessed was well below 20% including rarer

populations such as Treg or memory T cells (Figure 2E-F and Supple-

mentary Table 4). The only exceptions here were monocytes with a

variance of 22.7% and CD8+ central memory T cells with a variance

of 33.3%. Importantly, both on CD4+ and CD8+ T cells, highly

expressed CD28 as well as low-expressed activation marker CD279

(PD-1) were well detectable in all debarcoded samples

(Supplementary Figure 2B and Supplementary Table 5). This was also

supported by the relatively low variance in the median fluorescence

(MFI) of these markers (Supplementary Figure 3A-B and Supplemen-

tary Table 6). As expected, non or low-expressed markers (for

instance, CD154) did not always meet the 20%CV cut-off criteria (not

shown).

3.2 | Simultaneous challenge of pooled, barcoded
PBMCs reveals drastic PHA-mediated changes to
immune cell composition

Multiplexing is often applied in situations where timing of a cellular

stimulus is critical to reduce operator-induced variability of results

[24, 31]. We thus adapted our barcoding protocol (5-choose-2,

n = 10 samples, Supplementary Figure 3C) for use with a slightly

modified immunophenotyping protocol described in the previous

paragraph to assess barcoded and pooled, simultaneously challenged

PBMCs (Figure 3A). Concretely, we pooled barcoded PBMCs from

n = 10 donors and challenged them for 48 h with PHA (2.0 μg/ml),

a plant-derived lectin with strong mitogenic activity [43].

Postchallenge, the pooled cells were then labeled with identical

20-color immunophenotyping cocktails. In this experiment, we

sought to assess (1) if the anti-CD45 barcodes were stable for pro-

longed periods of time at 37�C in culture conditions, and (2) if the

application of unbiased machine-learning approaches for data analy-

sis would help us identify MoA related phenotypic immune cell

changes. We applied optSNE for dimensionality reduction and the

illustration of PBMC populations followed by FlowSOM clustering of

the combined concatenated dataset. Our approach revealed that,

while effective de-barcoding was still possible, the labelling

efficiency of certain fluorochromes (e.g., CD45-AF532 and

CD45-PerCPCy5.5) was reduced (Supplementary Figure 3C).

Postdebarcoding, we identified n = 20 metaclustered cell

populations through FlowSOM (Figure 3B and Supplementary
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Table 7). Interestingly, some of these were only found in either

treatment-naïve or PHA-challenged conditions (Figure 3C),

suggesting drastic MoA related effects of PHA. Indeed, we found

that a total of n = 14 populations (out of 20 identified) had statisti-

cally significant changes in their abundance (Figure 3D and Supple-

mentary Table 8). These mostly reflected changes in the abundance

of T cell subsets such as Tregs and activated CD4+ and CD8+ T cells

characterized through differential expression of activation markers

such as CD154, CD137, CD223, CD278, CD279 and CD366

(Figure 3D, Supplementary Figure 3D and Supplementary Results).

Interestingly, we also found that CD14hi monocytes as well as NK

cells and a B cell cluster changed in abundance (possibly due to
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bystander effects of T cell activation). In summary, the simultaneous

challenge of pooled barcoded PBMCs proved to be a viable applica-

tion for our assay protocol while at the same time highlighting possi-

ble limitations for the live culture of barcoded cells.

3.3 | Multiplexed analysis of SEB challenged
PBMCs identifies unique CD4+ T cell clusters with
distinct activation profiles

Encouraged by these observations, we decided to adapt our

6-choose-3 barcoding approach (Supplementary Figure 2) to another

real-life immunophenotyping application. Staphylococcus enterotoxin

B (SEB) is a highly potent toxin, which activates human CD4+ T cells

in a polyclonal fashion followed by cellular activation and release of

pro-inflammatory cytokines. Even though SEB-mediated immune

responses have been studied using various cytometry techniques [44],

unbiased comprehensive immunophenotyping of the T cell compart-

ment with high-cellular resolution in vitro has not yet been

carried out.

Consequently, we cultured PBMCs from n = 20 different donors

individually followed by challenge with SEB (1.0 μg/ml) for 48 h.

After cell culture, the cells were barcoded, pooled and stained with a

21-parameter immunophenotyping master mix which was designed

to minimize overall spectral complexity and possible SE effects

(Figure 3A and Supplementary Figure 4A). Postacquisition and debar-

coding of live cells, we again employed machine-learning approaches

for data analysis and PBMC subset identification (Figure 4A). This

workflow led to the identification of 17 PBMC metaclusters

according to their cell surface marker expression (Figure 4B, Supple-

mentary Figure 4B and Supplementary Table 9). As expected from

the purported MoA, we observed significant changes in the abun-

dance of specific immune cell subsets under SEB challenge

(Figure 4C, D and Supplementary Table 10). For instance, we identi-

fied conventional/highly activated CD4+ T cells as well as CD4+

Tcm and CD4+ Tem cells to be significantly increased under SEB

challenge. Both CD4+ as well as CD4+ Tem cells were reduced.

CD8+ Tem cells were also less abundant post-SEB challenge, while

CD14hi monocytes practically disappeared. In addition, we identified

two clusters of CD4+ T cells unique to the SEB challenge. These

highly activated cells were unique in their CD279, CD134, CD137

and CD154 expression. Both clusters of activated CD4+ T cells were

clearly detectable post-SEB challenge but practically absent under

naïve conditions (Figure 4D). Specifics as to the cell surface marker

characterization of these cells are summarized in the Supplementary

Results. Taken together, these findings highlight the potential of our

barcoded flow cytometry workflow to identify unique SEB-induced

changes in the abundance of immune cell types in a highly para-

llelized manner.

4 | DISCUSSION

Here, we present a full spectrum flow cytometry based multiplexing

panel allowing for the simultaneous acquisition of up to n = 20 differ-

ent PBMC samples. Using a 5-choose-2 approach (up to n = 10 sam-

ples) or applying a more complex 6-choose-3 approach (up to n = 20

samples), we found robust debarcoding efficiency of individual sam-

ples using a standard Boolean gating approach. For instance, for the

6-chose-3 approach, the debarcoding efficiency was excellent with an

average of 4.8% ± 0.4% (ideal: 5%). These results are in the range of

(or even exceed) observed debarcoding efficiencies typical for CyTOF,

the current benchmark for this technology [19]. Importantly, the fluo-

rescent tags of the anti-CD45 barcodes did not introduce major vari-

ance to the frequency of main PBMC lineages or T cell subsets post

debarcoding suggesting limited effects of barcode SE on downstream

populations. The %CV of critical (manually gated) populations

remained under 20% which we consider an acceptance criterion in

most flow cytometry validation protocols [14, 45]. Only monocytes

and CD8+ Tcm cells could be resolved with less precision. Given the

intrinsic increased autofluorescence of monocytes and the very low

abundance of CD8+ Tcm cells in our experimental setting (0.49%

± 0.16%), we find these results acceptable. In addition, barcoding hel-

ped minimize intra-sample variance, which is in agreement with

CyTOF barcoding results [19]. Finally, comparing the results of manu-

ally gated PBMC and T cell subset populations on identical samples,

we found that barcoding did not affect the results of optSNE medi-

ated dimensionality reduction and the representation of n = 13 manu-

ally defined populations.

Based on these observations, we developed a barcoding and

immunophenotyping workflow employing unbiased machine-learning

approaches including FlowSOM and optSNE. The aim was to study

activation-induced changes to PBMC subset composition in different

scenarios. In the first 5-choose-2 protocol, we assessed the effects of

F IGURE 3 Assessing immunophenotypic changes in pooled barcoded PBMCs simultaneously challenged with PHA. (A) Schematic of the PHA
challenge assay. PBMCs from n = 10 donors were individually barcoded using a 5-choose-2 approach. Subsequently, cells were pooled and split
into two experimental conditions where they were either simultaneously challenged with PHA (2.0 μg/ml) or left treatment naïve. After 48 h, cells
were harvested and jointly labeled with immunophenotyping master mix (FMx or full stain including all activation markers) and acquired at the

cytometer. We subsequently applied FlowSOM and optSNE for further analysis. (B) Normalized expression heatmap for n = 20 cell metaclusters
identified in either treatment condition. (C) Illustration of the relative abundance of the n = 20 populations identified in (B) in treatment naïve and
PHA challenged PBMCs (optSNE on concatenated samples). (D) Statistical analysis (paired t-test, BH corrected) for the populations identified in
B. Only populations with statistically significant changes upon PHA challenge are displayed [Color figure can be viewed at wileyonlinelibrary.com]
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PHA on the abundance of n = 20 PBMC populations identified in con-

trol or challenged conditions. This protocol used cells that were

barcoded and pooled prior to simultaneous challenge. We noticed that

after the 48 h cell culture period, the staining intensity of the anti-

CD45 antibodies (especially CD45-AF532 and CD45-PerCPCy5.5)

was somewhat reduced compared to situations with barcoding on ice

followed by immediate pooled immunophenotyping and analysis.

Nevertheless, we were able to identify changes mostly in the T cell

compartment but also in the abundance of an activated NK cell cluster

and a B cell cluster. Even though PHA has mostly been studied in the

context of T cell activation [35, 46], these observations might be the

result of bystander activation (e.g., though the release of cytokines

post T cell activation). We next assessed a refined 6-choose-3

barcoded 21-color immunophenotyping panel in a 48 h PBMC stimu-

lation setting. Here, PBMCs were challenged individually with SEB, a

known T cell activator [47], which is occasionally used for PD bio-

marker purposes [47–50]. However, in-depth immunophenotyping by

flow cytometry at the PBMC population level has not been per-

formed. A relatively recent CyTOF based analysis of leukemia patient

PBMCs challenged with SEB found functional differences in T cell

memory subset responses and different cytokine release profiles, but

did not unbiasedly characterize changes in the abundance of these

subsets [44]. Furthermore, the manual gating approach used might

underappreciate rare effector cell subsets or cell clusters not present

before or after treatment [51]. Consequently, we tailored our next

barcoding workflow to characterize SEB-mediated changes in specific

PBMC T cell subsets. As a result, we confirmed previous findings that

primarily, CD4+ T cell subsets change in abundance under SEB chal-

lenge. We observed the appearance of two unique activation-specific

CD4+ T cell clusters at the expense of less activated Tcm and Tem

CD4+ populations. This is somewhat similar to APC mediated T cell

activation characteristic of functional responses including Interferon-γ

release and proliferation [52, 53]. Monocytes and CD8+ Tem cells

were reduced, but this could be a relative decrease due to the

increase in abundance of the aforementioned expansion of CD4+

populations. Importantly, in both the PHA and SEB challenge experi-

ments, hypothesis-guided manual gating would probably have missed

activation status-specific cell clusters thus highlighting the usefulness

of our multiplexed immunophenotyping protocol followed by

algorithm-guided machine learning.

Compared to other flow cytometry or mass cytometry

based barcoding protocols which rely on cellular fixation [25,

29], our assay allows for the multiplexed analysis of live

PBMCs, which could be recovered by cell sorting for further

functional assessment or additional in vitro culture if desired.

In addition, it works on bulk PBMCs and does not require the

use of cell lines or magnetically enriched cell populations [31].

Recently, for CyTOF, barcoded analysis of live PBMCs has

been introduced [20]. Nevertheless, we believe that our assay

protocol entails, as an additional advantage besides the

expected lower operational cost of full-spectrum cytometers,

less time and potentially higher overall debarcoding efficiency

[54, 55]. In addition, the sensitivity (and thus resolution) of

CyTOF mass reporters can be lower than that of quantum-

efficient fluorochromes [56]. This provides additional incen-

tives for the use of high-parameter flow cytometry panels in

situations where samples and target cell populations may

be rare.

The barcoding protocol we present here should limit

operator- or platform-induced variability and especially help

algorithm aided single-cell analysis workflows. Further improve-

ment of the protocol should address the currently observed var-

iability of very rare populations, such as CD8+ Tcm cells and

monocytes. In addition, CD45 expression is not equal on all

peripheral blood immune cells, which could result in further

challenges when multiplexing more complex immune cell

populations than PBMCs such as lysed whole-blood including

granulocytes. Consequently, additional improvements to the

method could include adaptations of other multiplexing

strategies as recently described for CyTOF. For instance, co-

labelling of ubiquitously expressed molecules such as beta-

2-microglobulin and CD298 on immune cells could further lead

to increased debarcoding resolution [20]. Finally, further

streamlining may be achieved through computational debar-

coding methods as presented elsewhere [23, 24]. In addition, if

barcoded samples are to be pooled for simultaneous short-term

challenge such as phosphorylation studies, the protocol should

be adapted for shorter incubation periods and possibly include a

fixation step. In summary, our combined barcoding and immuno-

phenotyping panel allows for the precise and automated analysis

of phenotypic changes in specific T cell subsets. It could thus

represent a valuable resource for various immunophenotyping

protocols benefiting from highly parallelized assessment of many

donors or treatment conditions.

F IGURE 4 Multiplexed assessment of individually SEB challenged PBMCs of n = 20 donors facilitates analysis of MoA related changes in T
cell subsets. (A) Schematic of the SEB PBMC challenge assay. PBMCs from n = 20 individual healthy donors were individually incubated with SEB
for 48 h (or remained treatment naïve). Using a 6-choose-3 approach, they were then barcoded and pooled. Barcoded PBMCs were immediately
incubated with an immunophenotyping antibody cocktail comprising n = 21 markers. Finally, using optSNE and FlowSOM, the effect of SEB
activation on T cells was assessed. (B) Normalized expression heatmap for n = 20 cell metaclusters identified in either treatment condition.
(C) Visualization of n = 17 PBMC metaclusters identified using the approach in B. D. Statistical analysis (multiple paired t-tests) on cell clusters
identified in B revealed SEB mode-of-action related changes predominantly in the CD4+ T cell compartment. Only populations with statistically
significant changes upon PHA challenge are displayed [Color figure can be viewed at wileyonlinelibrary.com]
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Abstract

Hematopoietic stem cells (HSCs) reside at the top of the hematopoietic hierarchy

and can give rise to all the mature blood cell types in our body, while at the same

time maintaining a pool of HSCs through self-renewing divisions. This potential is

reflected in their functional definition as cells that are capable of long-term multi-

lineage engraftment upon transplantation. While all HSCs meet these criteria, subtle

differences exist between developmentally different populations of these cells. Here

we present a comprehensive overview of traditional and more recently described

markers for phenotyping HSCs and their downstream progeny. To address the need

to assess the growing number of surface molecules expressed in various HSC-

enriched fractions at different developmental stages, we have developed an exten-

sive multi-parameter spectral flow cytometry panel to phenotype hematopoietic

stem and multipotent progenitor cells (HSC/MPPs) throughout development. In this

study we then employ this panel to comprehensively profile the HSC compartment in

the human fetal liver (FL), which is endowed with superior engraftment potential

compared to postnatal sources. Spectral cytometry lends an improved resolution of

marker expression to our comprehensive approach, allowing to extract combinatorial

expression signatures of several relevant HSC/MPP markers to precisely characterize

the HSC/MPP fraction in a variety of tissues.

K E YWORD S

flow cytometry, hematopoiesis, hematopoietic stem cells, immunophenotyping panel, spectral
cytometry

1 | INTRODUCTION

HSCs have the capacity to reconstitute the entire hematopoietic sys-

tem of a host. This remarkable regenerative potential has led to their

use in existing and emerging therapies for a variety of disorders. In

the clinic, HSCs can be isolated from the bone marrow (BM), from

peripheral blood upon mobilization or from cord blood (CB). While

less accessible for transplantation purposes, prenatal HSCs such as

those residing in the fetal liver (FL) hold valuable information for the

optimization of this process. During hematopoietic development,

newly emerged HSCs travel to the FL where they expand in number

before migrating to their final niche in the bone marrow [1, 2]. Despite

undergoing active expansion, FL HSCs display superior engraftment

potential compared to CB or BM HSCs [3]. Therefore, studying this

prenatal HSC source can provide insights into how to retain or even

increase the engraftment potential of postnatal HSCs. The panel

described in this report was designed to phenotype the FL HSC frac-

tion as part of a multi-modal profiling effort to establish the molecular

signature of engraftment capacity [4]. While it is illustrated here in the

context of the FL, the selection of markers included in this panel

makes it a valuable resource for the characterization of HSC subsets

in other tissues and at various developmental time points.
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2 | COMPREHENSIVE MARKER PALETTE
FOR BROAD HSC CHARACTERIZATION

CD34 is traditionally used as a positive marker to denote the HSC

population and is central to most HSC phenotyping and enrichment

strategies as its expression marks the vast majority of HSC/MPPs.

The CD34+ hematopoietic fraction, however, is heterogeneous and

represents a broad collection of hematopoietic stem and progenitor

cells including cells that are not imbued with engraftment potential.

Further distinction between HSC/MPPs and more committed hema-

topoietic progenitors is guided by the expression of markers such as

CD38, CD45RA and markers specific to the different mature blood

cell lineages (lin). In general, there exists a consensus that the most

primitive hematopoietic progenitors can be found in the CD34+ [5],

lin-[6, 7], CD38� [8], CD45RA� [9], CD90+ [7] fraction [10]. How-

ever, this combination of markers is not absolute as long-term

repopulating activity has also been reported in the CD90�
HSC/MPP fraction, albeit at a lesser frequency [11]. Moreover,

CD38 expression is variable between donors and gating can be arbi-

trary as there is no consensus on a cut-off for CD38� primitive cells

[12, 13]. Sialomucin or CD164, has been suggested as an alternative

to CD38-based gating strategies in HSC transplantation settings [13]

and we have included this marker in our panel. CD69, while typically

referred to as a lymphocyte activation marker [14], recently has been

described as marking a transient population of mid-gestation

HSC/MPPs [15] and thus might provide some insight into the devel-

opmental staging.

In addition to these relatively broad positive and negative selec-

tion markers, we also propose the use of more specific HSC enrich-

ment markers to expand our phenotyping panel. CD49f has been

reported as a highly specific marker for HSCs, with the capacity to

enrich HSCs to a purity of �10% (1 in 10.5 cells) when added to the

aforementioned selection scheme [11]. Originally described in CB, this

marker is also expressed on BM HSCs [16] and FL HSCs [4] and is a

common addition to HSC enrichment panels. Another powerful HSC

enrichment scheme that has recently been described is driven by

CD133 and GPI-80 expression [17]. CD133 surface expression is

known to mark uncommitted HSCs from FL to BM [18–20] and GPI-

80 expression specifically marks self-renewing HSCs in the FL [21].

The combination of these (18lin-CD34+CD38-CD133+GPI-80+)

resulted in the purification of CB HSCs to the level of �1/5 cells [17].

CD201, also known as endothelial protein C receptor (EPCR), presents

another marker with potent HSC enrichment potential. First described

to mark mouse HSCs [22], CD201 was later reported to also mark

human HSCs in both CB [23] and FL [24]. Assessment of CD201

expression at different developmental time points revealed that unlike

in mice where its expression remains stable throughout development,

the percentage of cells that are CD201+ declines over time and few

CD201� expressing cells can be found in adult BM [24]. Integration

of transcriptomic and cell surface level data obtained from the multi-

modal profiling of FL HSCs revealed that CD201 marks a subset of

cells with the highest engraftment potential in the FL and transplanta-

tion experiments in the context of this work suggested that theT
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engraftable HSC enrichment capacity of CD201 parallels or even

exceeds that of GPI-80 [4].

In our panel design, we have assigned the HSC/MPP markers to

fluorochromes with as little spillover among each other as possible

since we expected unpredictable patterns of co-expression of these

molecules as well as a variety of expression levels (Table 1). The panel

design has been optimized in several iterations to eliminate artifacts

that were observed due to spillover. Clone selection was informed by

the consensus in the field as well as data generated previously [4].

We have included an extensive list of lineage-specific markers in

our phenotyping panel. HSC phenotyping usually assumes the use of

“lineage exclusion,” and a routine approach is to combine multiple

antibody specificities within one “dump” fluorescence channel by

using same fluorochrome conjugates or conjugates with similar emis-

sion spectra. This technique accommodates larger marker sets when

the parameter capacity is limited. However, many of those markers

are not exclusively expressed on committed lineages and this solution

carries a risk of excluding HSC/MPPs with ectopic expression of tradi-

tional ‘lineage’ markers. For instance, CD45 is used as a marker for

immune populations in general, but its expression can also be found,

to a lower extent, on progenitors. Also, the varying ranges of expres-

sion, when combined in one channel of detection, often presents a

difficulty in “gating”/subsetting the lineage negative fraction. Since

we employed a five laser spectral cytometry system, we were not lim-

ited by parameter capacity and assigned all lineage markers to individ-

ual fluorochromes. To map the lineages of committed hematopoietic

cells, we used CD45 (pan-hematopoetic marker), CD3 (T cells), CD56

(NK cells), CD19 (B cells), CD33 (monocytes), CD14 (monocytes),

CD66c (granulocytes), CD10 (ProB progenitors), CD42b (platelets),

CD41 (platelets), and CD235a (erythroid cells), summarized in

Table 2 [25–27].

To illustrate the performance of our proposed phenotyping setup,

we have stained CD34+ enriched human fetal liver cells as well as

human adult PBMCs with our 22-color spectral panel and acquired

the data on a 5 L Cytek Aurora analyzer (Cytek Biosciences). Cell iso-

lation, staining and data acquisition were performed as reported previ-

ously [4, 25] (see Supplemental Material for details) and data were

analyzed in OMIQ cloud platform. Both samples were concatenated,

all immunophenotyping fluorescence parameters were dimensionally

reduced into a UMAP space and clustered using Phenograph algo-

rithm. The PBMC datapoints served as landmarks that helped to visu-

alize commitment trajectories of FL cells in the same UMAP space

(Figure 1A). Phenograph clustering identified 39 clusters in the

concatenated samples (Figure 2A), most of which were exclusive to

F IGURE 1 Twenty-two-color spectral cytometry immunophenotyping of human fetal liver HSC/MPP cells. (A) UMAP projections of PBMC
and FL samples labeled with 22 color spectral cytometry panel. Expression levels of tested surface markers is shown as heatmaps overlaid on the
UMAP plot depicting live, single cells or platelets. (B) Bivariate plots showing expression of CD133, GPI-80 and CD201 in FL sample stained with
22-color panel (left panel) or previously reported [4] FL phenotypes (same reagents used for the depicted markers)
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one of the sample types, but others contained cells from both sources.

In Figure 2B, representing a clustered heatmap of the median marker

expression across clusters, we have marked the predominant, but not

exclusive, source of cells for each cluster. It is important to note that

there may exist sample-to-sample variability of marker expression

across FL specimens, and our 22-color dataset only represents a single

FL sample. When compared with the dataset collected with the early

version of our panel (available as FR-FCM-Z32M Flow Repository

public dataset) that contains 5 FL specimens, the ratios of certain

populations may vary across samples; for instance, the GPI-80+

CD133+ and CD201+ CD133+ cell subsets proportions differ across

the specimens (Figure 1B and [4]). However, qualitatively the identi-

fied combinatorial phenotypes of HSC/MPP subsets exist in most

samples.

Overall, we observed the expected patterns of expression of pre-

viously described markers in the HSC/MPP compartment as well as

the combinatorial signatures of multiple HSC markers that have not

been yet assessed in a single panel.

3 | CONCLUSIONS

In this report, we present a summary of current trends in phenotyping

human HSC/MPPs. We provide a detailed list of surface markers to

assist the study design, as well as share our 22-color spectral cyto-

metry panel that has been designed to encompass expression of all

proposed markers in a single tube assay. The HSC/MPP marker selec-

tion spans historically used HSC markers as well as more recently

described alternatives for HSC enrichment. All HSC markers included

in our panel are well-defined markers that have been extensively

characterized in terms of enrichment capacity for cells with self-

renewal and multi-lineage reconstitution potential, obviating the need

to repeat functional characterization in the context of this work.

We illustrate the performance of our multi-parameter

phenotyping panel on CD34+ enriched human fetal liver cells, creat-

ing a dataset that serves as an example of marker distribution across

the human HSC/MPP continuum at this developmental stage.

Importantly, the spectral cytometry panel described here allows

for the characterization of HSCs in different tissues, ranging in loca-

tion and developmental time, and can easily be expanded to accom-

modate alternative/newly discovered HSC/MPP markers, or

incorporate additional markers to profile non-conventional HSC

sources.
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Abstract

Assays based on Förster resonance energy transfer (FRET) can be used to study

many processes in cell biology. Although this is most often done with microscopy for

fluorescence detection, we report two ways to measure FRET in living cells by flow

cytometry. Using a conventional flow cytometer and the “3-cube method” for

intensity-based calculation of FRET efficiency, we measured the enzymatic activity

of specific kinases in cells expressing a genetically-encoded reporter. For both AKT

and protein kinase A, the method measured kinase activity in time-course, dose–

response, and kinetic assays. Using the Cytek Aurora spectral flow cytometer, which

applies linear unmixing to emission measured in multiple wavelength ranges, FRET

from the same reporters was measured with greater single-cell precision, in real time

and in the presence of other fluorophores. Results from gene-knockout studies

suggested that spectral flow cytometry might enable the sorting of cells on the basis

of FRET. The methods we present provide convenient and flexible options for using

FRET with flow cytometry in studies of cell biology.

K E YWORD S

cell-based reporter assay, flow cytometry, FRET, kinase assay, protein kinase A, protein kinase
B/AKT, spectral flow cytometry

1 | INTRODUCTION

Förster resonance energy transfer (FRET) between fluorophores

depends on several factors, the most dynamic of which is theirJared Henderson and Ondrej Havranek contributed equally to this study.
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proximity and geometrical orientation. This property is the basis for

the many assays in which FRET provides the readout for a molecular

or biological phenomenon (1, 2). FRET-based assays have many

attractive features, but their utility in practice depends on the ease

and sensitivity of FRET detection and the accuracy with which FRET

can be measured. FRET is most commonly measured by its effect on

donor and acceptor fluorescence intensities, since this approach is

compatible with commonly-available instrumentation. FRET can also

be detected by fluorescence lifetime and polarization-based methods,

which offer certain advantages but require more specialized instru-

mentation. Fluorescence microscopy has been used most extensively

to measure FRET in cells, with the advantages of providing subcellular

localization and enabling the use of photobleaching for FRET valida-

tion, measurement, or calibration. However, microscopy has relatively

low throughput regarding the number of cells or samples that can be

assessed, and its requirement for cells to be immobilized (or nearly so)

prevents certain potential applications of FRET assays in cells.

Conventional flow cytometry (FCM) provides a higher-throughput

alternative approach for detecting FRET in cells. FCM measures per-

cell fluorescence emission from thousands of cells per second, in a

certain number of channels optimized for commonly used

fluorophores and defined by laser excitation and filter-set optical

detection wavelength ranges. With a laser that largely excites the

donor fluorophore but not the acceptor, FRET causes a relative reduc-

tion of fluorescence intensity in the donor's characteristic fluores-

cence emission range (donor quenching), accompanied by increased

emission in the range of wavelengths attributable to the acceptor

(sensitized acceptor emission). The user can compare the intensity of

acceptor-range emission (IDA) to donor-range emission (IDD) per cell in

real time after donor excitation, graphically using a IDA/IDD “dot plot”
or a “FRET ratio” (IDA/IDD) histogram. However, this manner of FRET

detection in FCM suffers from non-linearity (3), is affected by the

abundance of the acceptor, and varies with other factors that make it

“instrument-dependent”.
FRET efficiency (E) is an absolute measure of FRET that is

instrument-independent, corresponding to the proportion of donor

excitation events that were quenched by energy transfer to the

acceptor. As first reported by Zal et al. (4) for microscopy, the “3-cube
method” calculates E from IDD, IDA, and the intensity of acceptor-

range emission after acceptor excitation (IAA), after correcting for the

spectral cross-talk, or bleedthrough, and calibrating the instrument in

terms of a G parameter. Essentially the same approach has been

reported to provide reliable determinations of E from FCM measure-

ments (5, 6); more elaborate channel bleedthrough correction proce-

dures have recently been reported (7, 8). However, calculation of E is

only done after data have been acquired, limiting real-time assessment

of FRET by FCM to use of the FRET ratio.

“Spectral” techniques measure fluorescence emission in far more

channels (wavelength ranges) than the number of fluorophores under

detection, and a characteristic “spectral fingerprint” is defined for

each fluorophore. When multiple fluorophores are present simulta-

neously, spectral “unmixing” algorithms use these fingerprints to

determine the contribution of each fluorophore to the total

fluorescence, and thus their abundance. Spectral microscopy has been

used for intensity-based determination of FRET (9–12), but through

post-acquisition data analysis. Spectral flow cytometry (SFCM) has

become popular in recent years for the advantages that it provides in

sensitivity and the simultaneous use of multiple fluorophores (13, 14),

but the detection of FRET by SFCM has not previously been reported.

Among genetically-encoded biosensors based on FRET (15), those

that report on the enzymatic activity of protein kinases are widely

used and offer several advantages (16, 17). We previously reported

our use of FCM with a FRET-based reporter to measure AKT kinase

activity (18). We report here further optimization of the AKT activity

reporter, and demonstration of its use with FCM for time-course,

dose–response, and kinetic studies. We also show the flexibility of the

assay, by changing the reporter's target peptide to be specific for pro-

tein kinase A. Finally, we show that SFCM can detect changes in the

reporter's FRET, by unmixing based on the spectral fingerprints of

low-FRET and high-FRET controls.

2 | MATERIALS AND METHODS

2.1 | Three-channel detection of FRET by FCM

For FRET determination by FCM on an LSRFortessa flow cytometer

(BD Biosciences), filters were chosen with respect to Cerulean3, the

donor fluorophore used in all studies (C3; peak excitation and emis-

sion wavelengths, 433 and 475 nm), and the acceptor circularly-

permuted cpVenus[E172] (cpV; peak excitation and emission wave-

lengths, 515 and 528 nm). Donor fluorescence with donor excitation

(IDD, donor channel) was measured with a 405 nm laser and 480/40

filter; acceptor emission with donor excitation (IDA, FRET channel)

was measured with a 405 nm laser and 550/49 filter; and acceptor

emission with acceptor excitation (IAA, acceptor channel) was mea-

sured with a 488 nm laser and 530/30 filter. FRET was also deter-

mined on a different LSRFortessa flow cytometer using more typical

filter sets: a 405 nm laser and 450/50 filter for IDD measurement, a

405 nm laser and 525/50 filter for IDA measurement, and a 488 nm

laser and 530/30 filter for IAA measurement.

For the fluorophores and flow cytometer used (including its filters

and settings), calibration was based on methods developed by Zal

et al. (4) with subsequent modification by Chen et al. (5). For each

experiment, four channel cross-talk coefficients were determined

from FCM measurements made on cells of a single cell line (OCI-Ly7)

expressing control constructs: a (IDA/IAA) and b (IDD/IAA) were deter-

mined from cells expressing only cpV, while c (IAA/IDD) and d (IDA/IDD)

were determined from cells expressing only C3. Each coefficient was

determined as the slope of the regression line of event fluorescence

for the appropriate combination of channels, using data from single

fluorophore-expressing control cells mixed with non-fluorescent OCI-

Ly7 cells (to establish the graphical origin), after first subtracting the

average intensity of autofluorescence of unmodified cells in each

channel. The b coefficient, which was relatively small on average and

variable, was empirically found to be best set by default to zero.
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The G coefficient, which relates sensitized acceptor emission to

donor quenching (4, 19), was determined by using a pair of FRET con-

trols in which C3 was fused to cpV, but with very different intramo-

lecular proximities between the fluorophores and therefore high

differences in E. A rigid 230-amino acid linker from TRAF2 was used

between C3 and cpV to create a low-FRET control, C3-TRAF2-cpV

(20), while a linker-free C3-cpV fusion protein served as a high-FRET

control. For each FRET control, per-cell fluorescence intensity values

(IDD, IDA, and IAA) were subtracted by the corresponding

autofluorescence averages for unmodified cells of the same cell line,

and then used to calculate the following parameters: the corrected

IAA value, Iaa = (dIAA�cIDA)/(d�ca);

Idd = (aIDD�bIDA)/(a�bd), simplified in practice as IDD, given

b = 0; and sensitized acceptor emission, Fc = IDA�aIaa�dIdd.

From a plot of FC versus Idd for each control, events in the middle

range of Idd (displaying linearity) were selected for calculation of aver-

age values of FC, Idd, and Iaa. These were then used to calculate the

G coefficient, by the following equation: (5)

G = [(Fc2/Iaa2) � (Fc1/Iaa1)]/[(Idd1/Iaa1) � (Idd2/Iaa2)] in which 1 and

2 are respectively the high-FRET and low-FRET controls.

For determination of FRET efficiency (E) in samples, FlowJo soft-

ware was used to select events with IAA fluorescence levels above

that of unmodified autofluorescent control cells of the parental cell

line, then auto-gating in FlowJo software was used to eliminate outlier

events with fluorescence values <1.5 SD from the mean in an orthog-

onal IDD versus IAA plot. Then, for all samples expressing reporter con-

structs for kinase activity, average autofluorescence values were

subtracted from per-cell fluorescence intensity values (IDD, IDA, and

IAA) as above, which were then used for calculation of FC and Idd,

followed by calculation of a per-cell E value using G in the following

equation: E¼ Fc= GIddþFcð Þ (5).
Single-cell E values for each sample were plotted as a moving

median of E versus IAA. A single average overall E value for each sam-

ple was calculated, using cells in the same range of reporter emission

intensities for all comparable samples. For kinetic measurements of E,

the average of single cell E values in a selected IAA range was plotted

versus time.

2.2 | Software for FRET data processing

A software package “fRet” was written in the R language to optimize

the processing of FCM data. A detailed user's manual, provided as

Data S2, illustrates primary FCM data and provides guidance for

selecting events for calculations in E determination. The software

package itself is available on request from the authors, along with

sample data for user practice. In brief, the process of analysis starts by

applying light scatter gates with standard analysis software

(e.g., FlowJo) to FCM data in .fcs files to identify live single cells

expressing the reporter or control construct. Raw event values for

each measured sample are then exported into a .csv file, one for each

sample, which can be directly used for calculations with the software.

Individual coefficients necessary for E determination are calculated

using control samples described above, including plotting of individual

graphs (IDA vs. IAA for acceptor single control, IAA vs. IDD and IDA vs. IDD

for donor single control, and FC vs. Idd for FRET high and low controls)

for quality control. The actual E values for FRET high and low controls

are also calculated, for comparison to expected values or values from

previous experiments. For experimental samples, the moving median

of E versus IAA is calculated for each analyzed sample based on

defined values for window step and width; results are plotted and

written as a .csv file, providing a single average value of E within the

selected IAA range. For kinetic mode analysis, the average E values

within the defined IAA range are plotted versus time and results also

written as .csv files.

2.3 | FRET detection by SFCM

We used an Aurora spectral flow cytometer (Cytek Biosciences; con-

figuration 4 L 16 V-14B-10YG-8R) with standard technical features

(https://f.hubspotusercontent00.net/hubfs/6765000/Website%20D

ownloadable%20Content/Guides%20and%20Manuals/N9_20006_

B_Aurora_UG.pdf, pp. 123–4), and detection of fluorescence in

8–16 channels for each laser (Data S3, Table S1). For determination

of E values by the three-channel method on the Aurora (also known

as “3-cube” in microscopy), raw fluorescence intensity values were

taken from three of its channels, most similar to the optical settings

employed on the LSRFortessa: IDD was based on excitation with a

405 nm laser and one of its detection channels (V4, 466–481 nm),

IDA came from the 405 nm laser channel V7 (533–550 nm), and IAA

came from channel B3 (533–550 nm) for the 488 laser.

For assessment of FRET by spectral unmixing (SU-FRET) on the

Aurora, we utilized built-in algorithms provided in SpectroFlo soft-

ware, which use least-squares linear regression to calculate an

intensity matrix that minimizes the difference between the experi-

mental data and the reference spectra (spectral fingerprints) multi-

plied by the intensity matrix (21). Custom “FRET-Low” and “FRET-
High” spectral fingerprints were created in SpectroFlo by collecting

data from OCI-Ly7 cells expressing the low-FRET or high-FRET

controls, respectively, and used with the spectral fingerprint of

unmodified cells (autofluorescence) in unmixing of the fluorescence

of cells expressing kinase activity reporter constructs. Unmixed

intensities were displayed real-time in an orthogonal FRET-high

versus FRET-low two-parameter plot. For experiments using addi-

tional fluorophores, reference data were added to the unmixing

panel according to the SpectroFlo user guide and unmixed along-

side FRET parameters as they would be for any other fluor. Spe-

ctroFlo software allows for retention of spectral signatures in a

long-term spectral library, and real-time FRET unmixing gives

equivalent results using same-day or stored FRET-Low and FRET-

High spectra, thereby avoiding the need to collect FRET reference

spectra on a per-experiment basis; in contrast, we found that

achieving precise three-channel determination of E requires the

acquisition of data from control-bearing cells on a same-day basis

(data not shown).
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3 | RESULTS

3.1 | Features of the AKT activity reporter
construct

Protein kinases are critical mediators of many biological processes,

and are therefore the subject of extensive research efforts in cell sig-

naling and drug development. Many genetically-encoded reporters of

protein kinase activity rely on FRET to reflect the phosphorylation

state of a kinase target peptide domain in the reporter (16, 17).

Reporter FRET is generated by two fluorescent domains in the

reporter, one serving as donor and the other as acceptor; its magni-

tude depends on the relative proximity and orientation of these

fluorophores, which in turn are affected by phosphorylation of a tar-

get peptide and its recognition by a phosphoamino acid binding

domain.

AKT, also known as protein kinase B, refers to three highly

homologous serine/threonine kinases that are conserved in mamma-

lian genomes and affect many aspects of cell biology, especially in

cancer (22). AktAR2 (23, 24) (Data S1, Figure S1A) is a cell-based

reporter of AKT kinase activity, originally applied in fluorescence

microscopy (25). The reporter's donor and acceptor fluorophores are

respectively Cerulean3 (C3), a cyan variant of green fluorescent pro-

tein (GFP), and cpVenus E172 (cpV), a circularly-permuted yellow GFP

variant. These are connected by a linker containing a target peptide

(residues flanking Thr24 in the AKT substrate FOXO1) and the FHA1

phospho-amino acid binding domain (from yeast RAD53) (26). When

the target Thr is phosphorylated by AKT, binding by FHA1 alters

reporter conformation and brings the fluorophores closer together

and/or into more FRET-favorable orientation. Since FRET efficiency

(E) is increased by proximity, E of AktAR2 is an indicator of the degree

of reporter phosphorylation, which reflects the level of AKT kinase

activity.

In classical AKT activation, phosphatidylinositol (3,4,5)-

trisphosphate (PIP3) generated by phosphatidylinositol 3-kinase

(PI3K) isoforms binds to AKT proteins and causes their translocation

to the plasma membrane, where they undergo activating phosphoryla-

tions at Ser473 (by the mTORC2 complex) and Thr308 (by PDPK1)

(22). Since PIP3 has additional positive allosteric effects on AKT and is

predominantly membrane-localized, AKT is principally active at mem-

branes (27). Therefore, we modified AktAR2 by adding the 10 N-

terminal amino acids from mouse Lyn kinase (“Lyn”) to the N-terminus

of AktAR2 (Data S1, Figure S1B), as done previously (23) to localize

AktAR2 to lipid rafts. In multiple cell lines representing the germinal

center subtype of diffuse large B-cell lymphoma (GCB-DLBCL),

expression of Akt-AR2 and Lyn-AktAR2 produced fluorescence attrib-

utable to C3 and cpV, exclusively in either the cytoplasm or plasma

membrane respectively, as expected (18). In GCB-DLBCL lines, “tonic”
(antigen-independent) signaling by the B-cell receptor (BCR) contrib-

utes to activation of AKT, through PI3K and the tyrosine kinase SYK.

By confocal microscopy-based measurement, E in two GCB-DLBCL

lines was higher with membrane-targeted Lyn-AktAR2, and was

lowered more in response to knockout (KO) of the BCR (Data S1,

Figure S2A). Therefore, Lyn-tagged forms of AktAR2 were used for all

subsequent experiments.

3.2 | Measuring reporter FRET by FCM

Assessed by fluorescence microscopy, E from the Lyn-AktAR2

reporter in GCB-DLBCL lines was decreased by BCR KO, roughly

matching the degree to which BCR KO reduced their proliferation

(18). However, measurement of E by microscopy was laborious, such

that it was practical to evaluate only a limited number of cells. Espe-

cially since subcellular mapping of E was not needed, we used FCM to

measure E in thousands of reporter-expressing cells. Specifically, FCM

was used to measure the fluorescence intensities of each passing cell

in channels spectrally optimized to detect donor or acceptor-range

emissions during either donor or acceptor excitation: IDD, IAA, and IDA

according to Zal et al. (4). FCM measurements from cells expressing

Lyn-AktAR2 or control constructs (Data S1, Figure S1B) were

processed with software (see Section 2), according to the spectral cor-

rection method of Chen et al. (5), to yield a single average value per

sample. As expected, E values for low- and high-FRET control con-

structs were highly constant, regardless of the cell line in which they

were expressed or the day of a particular assay (Data S1, Figure S2B

and Data S3, Tables S2 and S3), even across different cytometers and

PMT settings, and despite substantial variation in raw values for

autofluorescence and fluorescence from controls and reporters (data

not shown). Values of individual coefficients required for E calculation

were also stable for a particular cytometer and settings (Data S3,

Table S2).

3.3 | Further-optimized and control forms of the
AKT activity reporter

To assist interpretation of E values from the Lyn-AktAR2 reporter, we

also made a version (Lyn-AktAR2-D) with mutation of the target Thr

residue (Data S1, Figure S1B) (23). E of this “dead”, inactive

(unphosphorylatable) reporter approximates what would be the

E value of the “live” (active) Lyn-AktAR2 reporter without AKT kinase

activity, providing a lower bound by which to estimate how much

AKT kinase activity is reduced by BCR KO or other manipulation, and

a control for non-specific effects (e.g., in drug studies; see below).

We previously found only a small positive difference between

E values (ΔE) for Lyn-AktAR2 versus Lyn-AktAR2-D in unstimulated

cells of GCB-DLBCL lines (18), indicating substantial intramolecular

proximity between fluorophores when the AktAR2 reporter is

unphosphorylated. To increase the dynamic range of Lyn-AktAR2, we

inserted a flexible “EV” linker (28) between the FHA1 and FOXO1

domains to create Lyn-AktAR2-EV, and a corresponding inactive ver-

sion (Lyn-AktAR2-EV-D; Data S1, Figure S1B). EV increased the ΔE

between active and inactive reporters in several GCB-DLBCL lines

(Data S1, Figure S2C), and between BCR-unmodified and BCR-KO

cells of SUDHL-6 with active reporters (Data S1, Figure S2D).
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Several other observations regarding AktAR2-based reporters

were made. Expression of the active reporter did not affect the

growth of SUDHL-4 cells (Data S1, Figure S2E), suggesting that

the reporters do not interfere with AKT function. E values for

unmanipulated cells of each cell line, assayed on different days, were

relatively constant for active and inactive Lyn-AktAR2-EV reporters,

further showing assay precision (Data S1, Figure S3A). Reporter abun-

dance varied greatly between cells of each reporter-expressing line,

likely due to expression via a transposon vector; furthermore, for cells

at any particular level of reporter abundance, FCM yielded consider-

able variation in per-cell E values. We addressed these variations by

calculating E as a moving median (Ē) over the range of reporter abun-

dance, and found that Ē values of each reporter or control were rela-

tively stable, at characteristic levels, over a wide range of IAA (Data S1,

Figure S3B). This is consistent with theory; other than a potential

increase in inter-molecular FRET with increasing reporter concentra-

tion, which appears to be negligible, and unless the underlying AKT

activity is limiting, E should be unaffected by the reporter's cellular

abundance.

To calculate a single E value for a particular sample, an intermedi-

ate but wide range of IAA with stable Ē was selected, avoiding cells

with reporter levels that were either very high, which might over-

whelm AKT capacity, or very low, which might cause problems in

background subtraction. A consistent range of IAA was chosen for all

samples in a particular experiment, and the final single E value of each

sample was calculated as a mean of moving median Ē values in the

selected IAA range. Applied to cells of GCB-DLBCL lines in their base-

line state, this approach showed a slight increase in Ē values of the

Lyn-AktAR2-EV reporters with increasing IAA (Data S1, Figure S3B),

but the active reporter's Ē value was consistently higher than that of

the inactive reporter across the range of IAA.

3.4 | Validation of the AKT activity reporter

To verify that E determined by FCM with the active Lyn-AktAR2-EV

reporter reflects AKT kinase activity, we performed a variety of exper-

imental manipulations with expected effects on AKT kinase activity.

Using a transposon vector with a doxycycline (Dox)-inducible pro-

moter (29), found previously to be very non-leaky and Dox-titrat-

able (18), we expressed a constitutively-active (myristoylated) form of

murine AKT1 (MyrAKT) (18, 30). In two GCB-DLBCL lines with the

active Lyn-AktAR2-EV reporter, AKT activity in cells with inducible

MyrAKT was markedly increased at 48 h after Dox addition (also at

24 h; data not shown), but largely unchanged with induction of lucif-

erase (Luc) as a control protein (Figure 1(A)).

Other manipulations involved the lipid phosphatase PTEN, which

negatively regulates AKT kinase activity by hydrolyzing PIP3 to pho-

sphatidylinositol (4,5)-bisphosphate. Stable PTEN KO increased

E values of Lyn-AktAR2-EV in GCB-DLBCL lines (Figure 1(B)), consis-

tent with our previous findings that it increased AKT pS473 and res-

cued from the effects of BCR KO (18). After additionally introducing a

transposon vector for Dox-inducible PTEN re-expression in PTEN-KO

cells, we found that E from Lyn-AktAR2-EV declined with increasing

Dox concentration (Figure 1(C)), as expected.

3.5 | Feasibility of the AKT activity reporter assay
for dose–response, time-course, and kinetic studies

Ease of use, the low numbers of cells required, and precision from

averaging measurements from many cells make this assay suitable for

testing dose-dependent effects on AKT kinase activity in living cells.

We previously showed that clinical-grade, small-molecule inhibitors of

kinases involved in AKT activation by tonic BCR signaling (P505-15

for SYK, and idelalisib for the PI3K p110δ isoform) caused dose-

dependent inhibition of AKT kinase activity in GCB-DLBCL lines (18).

We now performed dose–response studies of additional inhibitors of

AKT and its activation, in which the inactive Lyn-AktAR2-EV reporter

was useful: the baseline ΔE between active and inactive reporters

(e.g., Data S1, Figure S4A) can be set as 100% AKT activity for each

line (Data S1, Figures S4A and S4B), thereby facilitating the interpre-

tation of inhibitor studies across different lines. The inactive reporter

can also identify inhibitor concentrations above which E of both

reporters is non-specifically affected (Data S1, Figure S4D).

After 1-h incubations, similar dose–response curves of two GCB-

DLBCL lines were observed for two allosteric inhibitors of AKT,

MK2206 (31) and AKT-VIII (SC66) (32), as well as the ATP-

competitive AKT inhibitor ipatasertib (GDC-0068) (33) (Figure 1(D)).

We also evaluated inhibitors of kinases respectively responsible for

activating phosphorylation of AKT at residues Ser473 and Thr308:

the pan-mTORC complex inhibitor MLN0128 (TAK-228) and the

PDPK1 inhibitor GSK-2334470 (Data S1, Figure S4D) (34, 35). All

inhibitors achieved nearly-complete inhibition of AKT activity at sub-

micromolar concentrations, indicating their potency. Specificity of

these results was shown by the lack of response to the BTK inhibitor

acalabrutinib (Data S1, Figure S5A) at concentrations at which it

inhibits calcium flux induced by BCR crosslinking in GCB-DLBCL lines

(Data S1, Figure S5B). However, in DLBCL cell lines of the activated

B-cell (ABC) subtype, some of which constitutively utilize antigen-

driven BCR signaling to activate BTK (36), acalabrutinib showed dose-

dependent inhibition of AKT activity (Data S1, Figure S5C).

The assay was able to perform kinetic monitoring of AKT activity,

similar to an assay for calcium flux, by data acquisition immediately

after the addition of reagents. After the addition of ipatasertib, maxi-

mal inhibition of baseline AKT kinase activity was reached in minutes

(Figure 1(E)), implying that the reporter is dephosphorylated by an

active process in the absence of AKT activity, despite the high affinity

of the FHA1 domain for phosphorylated threonine (estimated at

KD = 61–73 nM (37)). The reporter also detected rapid increases in

AKT kinase activity in GCB-DLBCL lines after BCR crosslinking by

antibodies, mimicking antigen-induced BCR signaling, above their

baseline E dependent on tonic BCR signaling. Kinetic monitoring

showed that the maximum increase in AKT activity, by �3 times the

baseline ΔE between active and inactive reporters, is reached in

minutes (Figure 1(F)); a time course showed that this maximal level
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was sustained for �2 h, declining to baseline after 8–24 h (Data S1,

Figure S5D).

The studies above suggested that this reporter assay might also

be able to assess the effect of inhibitors of kinases mediating AKT

activation by BCR crosslinking. As an example, we used kinetic moni-

toring to determine the effect of pre-incubation with the SYK inhibi-

tor P505-15 on the AKT activity response to anti-BCR. Although pre-

incubation lowered the AKT activity somewhat, due to the fact that

such inhibitors also inhibit the baseline activation of AKT by tonic

BCR signaling in GCB-DLBCL lines, this provided a new baseline

against which dose-dependent inhibition of the BCR crosslinking-

induced rise in AKT activity could be measured (Data S1, Figures S5E

and S5F).

3.6 | Changing the target peptide creates a
reporter of PKA activity

To demonstrate that a FRET-based reporter and FCM can be used to

measure the activity of a kinase other than AKT, we first created a

transposon-based vector (LPAR) for expression of a Lyn-tagged

reporter, identical to the Lyn-AktAR2-EV reporters except that the

AKT substrate FOXO1 peptide has been replaced by an AarI cassette

for seamless cloning. Into the LPAR vector, we then cloned target

peptides for protein kinase A (PKA), a serine/threonine kinase, based

on the AKAR2 reporter of PKA kinase activity (26), with either a cen-

tral Thr residue (active reporter, LPAR-AKAR-WT) or Val (inactive

reporter, LPAR-AKAR-mt) (Figure 2(A)).

We validated this PKA reporter in GCB-DLBCL lines by several

manipulations that have known effects on PKA. Forskolin, an activator

of adenylyl cyclases, is commonly used to elevate intracellular levels

of cyclic adenosine 30,50-monophosphate (cAMP), a “second messen-

ger” that allosterically stimulates PKA kinase activity by promoting

assembly of the tetrameric holoenzyme (38). In the OCI-Ly7 cell line,

forskolin reproducibly increased E from LPAR-AKAR-WT, without a

change in E from LPAR-AKAR-mt, in a classic dose–response pattern

(Figure 2(B)). cAMP is normally hydrolyzed by phosphodiesterases

(39), among which PDE4B is a prominent member in DLBCL cells (40).

Similar to the effect of forskolin, E from LPAR-AKAR-WT was

increased by two PDE4 inhibitors, RS25344 (41) and FDA-approved

roflumilast (42), without affecting LPAR-AKAR-mt, while the PKA

inhibitor KT5720 produced a slight reduction (Figure 2(C)).

PKA is well-established as an important negative regulator of sig-

naling by the T-cell receptor (43, 44), but its role in BCR signaling is

understood less well (45). We found that BCR crosslinking by anti-

bodies, mimicking antigen-induced BCR signaling, elevated E from

LPAR-AKAR-WT in GCB-DLBCL lines, over a time course (Figure 2

(D)) similar to that of AKT activation by BCR crosslinking (Data S1,

Figure S5D). Aguiar and colleagues showed that forskolin and PDE4

inhibitors increased cAMP levels in DLBCL cell lines, presumably also

increasing PKA activity, resulting in inhibition of the BCR signaling

mediator SYK (46), with the further consequence that the BCR signal-

ing mediator PI3K is also inhibited (47). SYK has been shown to inhibit

PKA activity in breast cancer cells by phosphorylating Y330 of the

PKA catalytic subunit (48), but others reported that PKA activity was

increased by phosphorylation of the same site by receptor tyrosine

kinases in other non-lymphoid cell types (49). In GCB-DLBCL lines,

we found that the SYK inhibitor P505-15 reduced basal E from LPAR-

AKAR-WT and blocked its increase by BCR crosslinking (Figure 2(E)).

This indicates that SYK, which is activated by both the tonic (18) and

antigen-induced types of BCR signaling (Data S1, Figures S5E

and S5F), promotes PKA activity as an additional consequence of BCR

signaling, possibly providing negative feedback to dampen BCR

signaling.

3.7 | Evaluating reporter FRET by SFCM

Because FRET assessment by FCM requires data post-processing, we

investigated whether spectral flow cytometry (SFCM) with real-time

channel unmixing may provide a useful alternative. SFCM measures

fluorescence in multiple channels for each exciting laser, whose

F IGURE 1 Effects on FRET of AKT kinase activity reporters of stable knockout and/or inducible expression of proteins affecting AKT activity.
(A) 48 h of doxycycline (Dox)-induced expression of a constitutively active form of AKT (myristoylated murine AKT1, mAKT) increases FRET
efficiency (E) of a “live” (active) AKT activity reporter (Lyn-AktAR2-EV) in two GCB-DLBCL lines. No increase in E is seen after induction of a control
protein (luciferase, Luc). Baseline E of a “dead” (inactive, non-phosphorylatable) AKT activity reporter (Lyn-AktAR2-EV-D) is shown for comparison.
The absolute increase of E with induction of MyrAKT versus Luc was 10.8% versus 0.5% in SUDHL-4, and 8.3% versus 0.4% in OCI-Ly7. Means of
three biological replicates are displayed; error bars represent the SD (***p < 0.001; two-tailed paired t-test). (B) E of the active reporter is increased
by stable PTEN knockout in the same GCB-DLBCL lines, with baseline E of the inactive reporter shown for comparison. The absolute increase of
E with PTEN KO was 1.4% in OCI-Ly7 and 7.8% in SUDHL-4. Means of four biological replicates are displayed; error bars represent the SD
(**p < 0.01; two-tailed paired t-test). (C) In two GCB-DLBCL lines with stable PTEN knockout and a Dox-inducible expression vector for PTEN re-
expression, E of the active reporter is decreased by increasing concentrations of Dox. Means of three biological replicates are displayed; error bars

represent the SD. (D) Dose–response curves of inhibition of AKT activity, measured with the active reporter, by ipatasertib and allosteric AKT
inhibitors MK-2206 and AKT-VIII in two GCB-DLBCL lines. E values are normalized according to the range of E values between those of untreated
cells with the active reporter (100%) or the inactive reporter (0%); negative values are attributed to measurement imprecision and noise. (E) Kinetic
monitoring with the Lyn-AktAR2-EV active reporter shows rapid inhibition of baseline AKT activity by ipatasertib (final concentration, 2 μM) in the
GCB-DLBCL line OCI-Ly7; there is no effect on FRET of the inactive reporter. (F) AKT activity of two GCB-DLBCL lines is rapidly increased by BCR
crosslinking with antibodies specific for the immunoglobulin heavy chain (IgH) isotype expressed by each line; there is no effect on the inactive
reporter, or with antibodies to other IgH isotypes [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 2 Detection of PKA kinase activity by a FRET-based reporter. (A) Principle of the FRET-based reporter of PKA activity. Phosphorylation
of threonine (T) in a peptide domain based on a known PKA target leads to its binding by the FHA1 domain of the reporter; this brings donor
(Cerulean3) and acceptor (cpVenus[E172]) fluorophores of the reporter into greater proximity, and increases the FRET signal between them when
illuminated. (B) Dose–response effect of forskolin (1-h incubation) on PKA kinase activity, reflected by E values of the active LPAR-AKAR-WT
reporter, in the GCB-DLBCL line OCI-Ly7. Means of four biological replicates, performed on different days, are displayed; error bars represent the
standard error of the mean. There is no effect of forskolin on the inactive LPAR-AKAR-mt reporter. (C) Effect of 1-h incubation with additional
modulators of PKA activity: the PKA inhibitor KT5720, and two inhibitors of PDE4 phosphodiesterases (roflumilast and RS25344). (D) Time course of
elevation in PKA activity, measured by LPAR-AKAR-WT, in response to specific BCR crosslinking antibody in the IgM-expressing GCB-DLBCL line
OCI-Ly19. There is no response with antibodies to the IgG isotype. (E) Effect of the SYK inhibitor P505-15 and/or anti-BCR antibodies on PKA
activity in GCB-DLBCL lines. Agents were used in 1-h incubations, plus a 15-min preincubation with P505-15 when used with anti-BCR antibodies. In
both lines, SYK inhibition lowers basal and BCR crosslinking-induced PKA activity [Color figure can be viewed at wileyonlinelibrary.com]
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combination constitutes a “spectral fingerprint” that is characteristic

for each fluorophore (50, 51). For a reference, we first evaluated FRET

determination on the Aurora spectral flow cytometer (Cytek Biosci-

ences) by the three-channel method, using raw intensity values from

three of the 48 channels to represent IDD, IDA, and IAA for post-

acquisition calculation of E by the method of Chen et al. E values from

the Aurora agreed well with corresponding E values from the Fortessa

for the low-FRET and high-FRET controls, and for resting cells with

live or dead kinase activity reporters (Data S3, Table S3), confirming

E as an instrument-independent measure of FRET. The stability of

moving median Ē values from the Aurora, over the wide range

of reporter abundance selected for analysis, was similar to that from

the Fortessa (Data S1, Figure S6A), but the Aurora provided greater

precision in single-cell E values (Data S1, Figure S6B), consistent with

previous reports of less “spreading error” (21). The dose–response

assessment of PKA activity stimulation by forskolin on the Aurora

(Data S1, Figure S6C) was similar to results on the Fortessa

(Figure 2(B)).

We then used the full set of fluorescence measurements by the

Aurora, and its built-in capability of spectral unmixing, to evaluate

real-time display of FRET assessment. When multiple fluorophores

are used in combination, unmixing algorithms use their spectral finger-

prints to determine their respective contributions to the total “raw”
fluorescence of each event, and thus their intensity values. To apply

spectral unmixing for FRET assessment (SU-FRET), we used cells bear-

ing low-FRET or high-FRET controls to generate spectral fingerprints,

respectively designated FRET-Low and FRET-High (Data S1,

Figure S7A), and added them to the library of fluorophore spectra in

the SpectroFlo software. With these fingerprints, the instrument can

unmix the fluorescence of reporter-bearing cells into an intensity-

weighted linear combination of FRET-Low and FRET-High emission

(and autofluorescence). Those intensities are calculated in real-time,

and displayed in an orthogonal 2-parameter plot. As expected, the cal-

culated intensities of low-FRET and high-FRET control cells lie along

the two axes of this plot, defining an easily-visualized range of FRET

in which reporter cells lie somewhere in-between (Figure 3(A)).

Among notable features of SU-FRET, prominent is that it provides

much better discrimination between different states of FRET than is

possible with the real-time alternative of a “FRET ratio” (Figure 3(B)).

In addition, a greater spread of SU-FRET values is seen for the live

PKA reporter than for the dead reporter or the low-FRET and high-

FRET controls (Figure 3(B)); a similar greater spread was seen for the

live AKT reporters by the three-channel method, at least with

the Aurora (Data S1, Figure S6B). Since a change in FRET can only

occur for the live reporter, as its level of phosphorylation changes, this

suggests that there is baseline biological variability in the activity of

these kinases. Finally, although SU-FRET does not directly yield an

E value, we found a remarkably linear relationship between a deriva-

tive of the unmixed FRET-Low and FRET-High intensities of reporter-

bearing cells and their E values (Data S1, Figure S7B).

We performed several tests to confirm the validity of SU-FRET,

relying on the predictable increase in AKT activity caused by BCR

crosslinking. When OCI-Ly7 cells expressing Lyn-AktAR2-EV were

either left untreated or stimulated with non-fluorescent anti-BCR,

then washed and mixed in different proportions, distinct populations

were seen on the SU-FRET dot plot, and the proportions of cells iden-

tified in regions of lower or higher SU-FRET matched their expected

proportions (Data S1, Figure S8A). We then tested whether the dis-

tinction between BCR-stimulated and unstimulated reporter-bearing

cells by SU-FRET could be simultaneously verified by using

fluorescently-labeled anti-BCR. We found that the increase in SU-

FRET from Lyn-AktAR2-EV was the same when using anti-BCR

labeled with Alexa Fluor 647 (AF647), whose excitation and emission

spectra are separated well from those of C3 and cpV, as when using

unlabeled anti-BCR; similarly, the binding of AF647-labeled anti-BCR

did not change SU-FRET from Lyn-AktAR2-EV-D (Data S1,

Figure S8B). Since SU-FRET from the AKT reporter was free from

interference by AF647, we mixed Lyn-AktAR2-EV cells that were

either unstimulated or stimulated with AF647-labeled anti-BCR, and

found that AF647 signal (indicative of BCR crosslinking) marked cells

with increased SU-FRET (Data S1, Figure S8C). This also made possi-

ble a kinetic assay to demonstrate that the binding of AF647-labeled

anti-BCR precedes AKT activation, detected post facto by an increase

in E or the “SU-FRET ratio” of unmixed intensities (FRET-High/FRET-

Low; Data S1(Figure S8B)), or in real time by two-parameter mapping

of SU-FRET (Movie S1).

In addition to providing a real-time assessment of FRET, SU-FRET

differs from FCM-FRET in requiring no additional efforts to allow the

use of additional or multiple fluorophores, even when spectrally simi-

lar to the FRET donor and acceptor. We compared spectral unmixing

and three-channel methods in kinetic assays after the addition of anti-

BCR to cells that were either otherwise-unlabeled or labeled with

fluorophores with increasing spectral similarity to cpV: AF647, phyco-

erythrin (PE), or DyLight 488 (Data S1, Figure S9A). Binding of

DyLight 488-labeled anti-BCR interfered with the three-channel

method, producing an artifactual increase in FRET from Lyn-

AktAR2-EV, as compared to unlabeled anti-BCR and the other

fluorophores, but SU-FRET was equivalent with all fluorophores (Data

S1, Figure S9B). After finding that SU-FRET from Lyn-AktAR2-EV was

stable when cells are placed on ice (Data S1, Figure S9C), we placed

unstimulated AKT reporter-bearing cells on ice, and either left them

unstained or stained them with a panel of differently-labeled anti-

bodies to B-cell surface markers (Data S1, Figure S9D), resembling the

type of multiparameter staining often used to define subsets of hema-

topoietic cells (52). SU-FRET from Lyn-AktAR2-EV was the same for

both sets of cells (Figure 3(C)), indicating that SU-FRET was unaf-

fected by those additional fluorophores, or by anti-BCR when used

on ice.

3.8 | Using spectrally-unmixed FRET (SU-FRET) in
studies of gene knockout

Our previous studies of gene KO (Figure 1 and (18)) utilized delivery

of plasmids via electroporation, which is typically successful in only a

fraction of cells, and associated with varying degrees of toxicity. We
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therefore tested the use of lentiviral transduction for KO of genes

involved in BCR signaling and/or AKT activity. We first used a single

lentivirus for stable expression of both Cas9 and a guide RNA (gRNA),

along with resistance to the rapidly-toxic antibiotic puromycin. Only a

small proportion of OCI-Ly7 cells bearing the Lyn-AktAR2-EV

reporter were initially resistant to puromycin, but these were

expanded and then examined for their SU-FRET response to BCR

stimulation with AF647-labeled anti-IgM. Targeting of CXCR4 was

used as a negative control, since its KO by electroporation was previ-

ously shown to have no effect on AKT activity in GCB-DLBCL lines

(18), and almost all CXCR4-targeted cells bound by anti-IgM were

found in a region of high SU-FRET (Figure 4(A)), indicating preserva-

tion of the AKT response to BCR stimulation. With a viral gRNA

targeting two of the three genes of human AKT (AKT1 and AKT2), a

large fraction of cells binding IgM failed to increase their SU-FRET,

suggesting that KO of AKT1/2 had occurred, but only in a subset of

cells. This was supported by findings in cells with targeting of IGHM,

used as a positive control because IgM is required for BCR expression

and stimulation: only a fraction of cells showed reduced IgM staining,

but those cells also failed to show increased SU-FRET (Figure 4(A)).

Because the combined Cas9/gRNA virus gave low transduction

efficiency and incomplete KO, we tested a lentivirus expressing only

gRNA and puromycin resistance in AKT reporter-bearing OCI-Ly19

cells that had also been engineered for Dox-inducible expression of

Cas9. After puromycin selection, Dox was added and cells were evalu-

ated by SFCM over several days for SU-FRET, before and after

F IGURE 3 Spectrally-unmixed FRET (SU-FRET) discriminates differences in FRET, in real time and without interference from other
fluorophores. (A) Principle of SU-FRET. The fluorescence of cells with FRET reporters or controls is measured by the Cytek Aurora spectral flow
cytometer and unmixed in real time into a linear combination of intensities of FRET-Low and FRET-High emission, displayed in an orthogonal
two-parameter plot. The calculated intensities of low-FRET and high-FRET control OCI-Ly7 cells lie along the two axes of this plot, as expected,
whereas those of cells expressing the live AKT activity reporter (Lyn-AktAR2-EV) lie somewhere in-between. Unmodified cells are at the origin.
(B) FRET from OCI-Ly7 cells expressing controls or PKA reporters, including strong PKA stimulation of the live reporter with forskolin,
determined in real time. SU-FRET (left panel) provides superior discrimination of FRET differences, as compared to assessment by a “FRET ratio”
(center and right panels). (C) Independence of SU-FRET from other fluorophores. OCI-Ly7 cells with the Lyn-AktAR2-EV reporter were treated as
two groups, either unstained (top panels) or stained with labeled antibodies (bottom panels) recognizing B-cell surface markers (CD19-APC,
CD44-BV785, CD10-PE-Cy7, CD27-APC-Cy7, CXCR4-BV421, and IgM-AF647) or the T-cell marker CD3 (FITC-labeled). Single-cell events from
both groups were gated first by FSC-A versus SSC-A and then FSC-A versus FSC-H (not shown). Gated events from the two groups were then
separately and sequentially gated by the antibody combinations shown, from left to right. The unmixed High-FRET and Low-FRET intensities for
final gated events from the stained and unstained groups were then overlaid in different colors in the SU-FRET contour plot at the far right,
demonstrating no change in SU-FRET due to the presence of other fluorophores [Color figure can be viewed at wileyonlinelibrary.com]

HENDERSON ET AL.

		  63



periods of acute anti-BCR stimulation. Cells were also evaluated for

the expression of targeted proteins: surface-detectable proteins (IgM,

CXCR4, and CD19) were stained and detected simultaneously with

SU-FRET measurement, while intracellular proteins (SYK, AKT, and

PTEN) were stained in separate, parallel aliquots after fixation

and permeabilization. Five days after Dox addition, BCR stimulation

F IGURE 4 SU-FRET detects effects of gene knockout on AKT activation by BCR signaling. (A) SU-FRET response to BCR crosslinking varies
with the gene targeted and the degree of knockout (KO). Lentiviral vectors were used to deliver Cas9 protein, puromycin resistance, and a guide
RNA (gRNA) targeting the genes shown in OCI-Ly7 cells expressing Lyn-AktAR2-EV. Puromycin-resistant cells were then stimulated with
AF647-labeled anti-IgM (1 μg/ml for 10 min) and analyzed for SU-FRET response. There was no effect of targeting CXCR4, but targeting IGHM
was inhibitory to cells in which KO was achieved, as shown by the level of surface IgM. (B) Effect of gRNAs targeting various genes relevant to
AKT activation by BCR signaling, on OCI-Ly19 cells with live (top row) and dead (bottom row) AKT reporters. Lentiviral vectors were used to
deliver gRNAs and puromycin resistance, in cells with Dox-inducible Cas9. SFCM data were obtained 5 days after Dox addition, and at 60 min
after stimulation with AF647-labeled anti-IgM (1 μg/ml). SU-FRET is displayed as the per-cell ratio (FRET-High/FRET-Low) of unmixed intensities
(left panels); other panels show surface expression of three targeted genes [Color figure can be viewed at wileyonlinelibrary.com]
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produced increases in SU-FRET from Lyn-AktAR2-EV (but not Lyn-

AktAR2-EV-D), to a degree that varied as expected with the function

of the gene targeted, but also with the uniformity and degree of the

KO and protein loss achieved, which we attribute to differences in

gRNA efficiency. As before, targeting IGHM produced loss of surface

IgM in only a fraction of cells, which showed less SU-FRET response

to BCR stimulation (Figures 4(B), Data S1 (Figures S10A and S10B)).

However, CXCR4 was lost in all cells, with preservation of their

response to anti-BCR as expected (Figures 4(B) and Data S1,

Figure S10B). The entire population of SYK-targeted cells showed

reduced SU-FRET response to anti-IgM by 10 min (Data S1,

Figure S10C), consistent with uniform loss of SYK protein (Data

S1, Figure S10B) and its known critical role in BCR signal transduction.

A fraction of PTEN-targeted cells showed increased basal SU-FRET

with Lyn-AktAR2-EV (Data S1, Figure S10C), as expected from stable

KO studies (Figure 1) and its role as a negative regulator of AKT acti-

vation, and consistent with staining that showed PTEN protein loss in

only a fraction of cells (Data S1, Figure S10B). A fraction of PTEN-

targeted cells also showed a reduction in surface CXCR4 (Figure 4(B)),

consistent with the negative regulation of CXCR4 transcription by

AKT (18). Surface CD19 protein was lost from all CD19-targeted cells,

but to a highly variable degree at 5 days of Dox, and CD19-targeted

cells showed only a modest reduction in SU-FRET response to anti-

IgM, which was even less at shorter durations of stimulation (Data S1,

Figures S10B and S10C). AKT-targeted cells showed only a modest

reduction in SU-FRET response to anti-IgM, likely because only two

of the three AKT genes were targeted by the gRNA used.

The results of this KO experiment suggest that if an SFCM instru-

ment with sorting capability were available, a gRNA library screen

could be done to identify genes whose KO has an effect detectable

by changes in SU-FRET. To support this, and present the results more

succinctly, we combined the SFCM results for Lyn-AktAR2-EV from

all six gRNAs, separately for unstimulated cells and at 60 min after

BCR stimulation, as if they had been acquired from a single culture

(Data S1, Figure S11A). We then analyzed the results by gating first

on defined regions of SU-FRET, and then by surface IgM and CD19

status. For unstimulated cells, regions of normal, high and low basal

FRET were set based on the CXCR4-KO negative control (Data S1,

Figure S11B); for BCR-stimulated cells, regions of high and low were

set based on the populations of unmodified and BCR-KO cells in the

IGHM-targeted positive control (Data S1, Figure S11C). For each

gRNA, the numbers of events in each region were “scaled” as a per-

centage of all events for that gRNA, to normalize differences between

gRNA species in the number of events acquired (Data S1,

Figure S11D and Data S3, Tables S4–S7). In the unstimulated sample,

cells with elevated SU-FRET were found to be highly enriched for

PTEN gRNA (Figure 5(A)), even though KO of PTEN protein was only

partial (Data S1, Figure S10B). BCR-stimulated events with low SU-

FRET (representing cells with impaired AKT activation) were enriched

for CD19 and IgM gRNAs in regions with respective loss of those pro-

teins, as expected, and for SYK gRNA in cells with retained expression

of CD19 and IgM (Figure 5(B)). Events with high SU-FRET were simi-

larly enriched for CD19 and IgM gRNAs in regions with respective

loss of those proteins, but depleted of SYK gRNA in cells with

retained CD19 and IgM expression.

4 | DISCUSSION

FRET is a potentially quantitative indicator of proximity between

donor and acceptor fluorophores in the 1–10 nm range, well below

the �20 nm limit of resolution of super-resolution fluorescence imag-

ing microscopy methods such as stochastic optical reconstruction

microscopy. With proper assay design, donor-acceptor proximity

and/or orientation change can directly reflect a biomolecular phenom-

enon, such as protein–protein interaction (8, 53), protein-membrane

proximity (54, 55), or protein conformation (56, 57), or enable an arti-

ficial construct to report indirectly on a phenomenon such as the

enzymatic activity of a kinase or protease (58). FRET reporters are

well-established for the reliable measurement of kinase activ-

ity (16, 17), and provide many advantages: fast response, desirable for

real-time studies; application to single live cells, thereby maintaining

cellular context and allowing kinetic analyses and the analysis of sub-

populations; low cost per assay, since no reagents are needed for sig-

nal detection; parallel use of a non-phosphorylatable reporter, as a

control (23); and flexible application to different kinases, by changing

the target peptide used.

FRET is therefore a powerful tool that has been used in many

studies of cell biology, as well as for molecular studies in vitro. How-

ever, the full application of FRET to cell biology research has been hin-

dered by requirements for specialized instrumentation and data

processing, and the low throughput or cell immobilization required for

fluorescence microscopy. Because FCM is well-established, widely

available for measuring fluorescence in cell biology research, and has

high throughput capability, it is desirable for FRET-based applications.

FCM has been used to assess intensity-based FRET, but most com-

monly by a simple FRET ratio (IDA vs. IDD) that is instrument-depen-

dent. Using spectral corrections and other calibrations, determination

of the apparent FRET efficiency (E) by FCM has been shown to mea-

sure FRET with high reliability and in instrument-independent terms

(5, 6), including from FRET-based kinase activity reporters (18, 59).

(FRET by fluorescence lifetime can also be measured by FCM,

although custom instrumentation and analysis are required (60, 61).)

Processing FCM-generated data for the calculation of E is required,

for which we and others (62, 63) have provided software to expedite

the task. Furthermore, FRET measurement by FCM is suitable for

applications other than kinase activity reporters, such as protein–

protein interaction (8, 53). Recently-developed single-fluorophore bio-

sensors can also report on kinase activity, and should be suitable for

FCM (64–66).

As we have shown, FRET assessment by FCM can be a valuable

tool for studies of cell biology. However, with current commercially-

available instruments and software, determination of E by FCM can-

not be done in real time, thereby limiting FRET-based sorting to the

less-informative FRET ratio. Perhaps more importantly, limited sam-

pling of the emission spectrum by FCM, combined with tediousness
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of cross-talk compensation, makes the use of FRET in the presence of

other fluorophores rather difficult. We found that these problems are

overcome by SFCM, whose built-in spectral unmixing feature enables

real-time precise and sensitive discrimination between cells with dif-

ferent FRET levels. Assessing FRET by spectral unmixing (SU-FRET) is

simple, requiring only one-time data acquisition from cells expressing

low-FRET or high-FRET constructs and unmodified cells. With the

increasing availability of instruments capable of SFCM, which

improves discrimination between fluorophores, the simplicity of SU-

FRET may increase the use of FRET in cell biology research, especially

with the ability to employ additional fluorophores. For example, SU-

FRET may enable transgenic FRET reporters to be evaluated in cell

subsets that require multiple fluorophores to define, such as many

types of hematopoietic cells.

SU-FRET also provides a non-graphical index of FRET, through

the SU-FRET ratio of unmixed FRET-High and FRET-Low intensities;

however, this is not the same as E, although it could be used to esti-

mate E from a calibration (Data S1, Figure S7B), nor is it similarly inde-

pendent of instrumentation or experimental conditions. One obvious

conditional factor is the choice of low-FRET and high-FRET controls

that provide spectral fingerprints for unmixing; the controls that we

used varied greatly in their FRET efficiency (E values of �5%

and �65%, respectively). Using controls that encompass a more nar-

row range of E, as might be accomplished empirically with linkers of

slightly different lengths to separate the donor and acceptor

fluorophores (5), might expand the graphical separation between sam-

ples with intermediate E values. Likewise, substituting the low-FRET

control with a zero-FRET one would extend the dynamic range of

SU-FRET to E values below 5%. An additional potential limitation of

SU-FRET is that it has not yet been shown to be reliable for

non-stoichiometric FRET systems, such as to monitor protein:protein

interactions in cells, in which donor and acceptor fluorophores are

F IGURE 5 Gating on SU-FRET implicates genes regulating AKT activation. (A) Combined SFCM data from the KO experiment shown in
Figure 4(B), for unstimulated cells bearing the live AKT reporter. In SU-FRET regions based on cells with gRNA targeting the negative control
CXCR4, donut plots show the scaled proportions of cells according to gRNA-targeted genes. Cells with high basal SU-FRET are found to be
enriched for cells with targeting of PTEN. (B) Similar to A, but for the live reporter sample at 60 min after AF647-labeled anti-IgM (1 μg/ml). Cells
were gated first by SU-FRET response to BCR stimulation, and then by surface expression of IgM and/or CD19. SYK gRNA is enriched in low-
response cells that retain the expression of IgM and CD19. Among cells with normal SU-FRET response to BCR stimulation, the SYK gRNA
proportion is reduced [Color figure can be viewed at wileyonlinelibrary.com]

HENDERSON ET AL.

	 66	



attached to different proteins rather than stoichiometrically linked in

a single reporter construct. In such situations, the spectral signatures

of low-FRET and high-FRET controls may be insufficient to calibrate

FRET signatures across variable acceptor-to-donor ratios, and there-

fore this more general type of FRET application is currently best

served using the quantitative E-FRET method. However, as compen-

sation for these limitations, SU-FRET is simple to use, gives results in

real time, and facilitates the use of multiple fluorophores. Data S1

(Table S8) presents features of the three-channel and SU-FRET

methods in parallel.

We focused our study of FRET by flow cytometry on the use of

reporters of kinase activity, which is of widespread interest in diverse

areas such as cell signaling, metabolism, and drug development. Many

methods used to assess kinase activity have significant shortcomings,

such as low throughput, loss of cellular context, or applicability only

to cells in aggregate. Because AKT kinase activity is promoted by

phosphorylation at certain highly-conserved AKT residues (Ser473

and Thr308 of AKT1), detection by specific antibodies is often used as

a surrogate indicator of AKT activity. However, we found that this did

not provide results that agreed with other evidence of AKT activity, in

contrast to using FCM with AktAR2-based reporters (18). pS473 may

be an especially poor surrogate for AKT kinase activity, being less reli-

able than pT308 (67) or rendered non-essential by phosphorylation of

S477 and T479 (25), and both S473 and T308 are paradoxically

hyperphosphorylated after treatment with ATP-competitive AKT

inhibitors (68), whose effect on AKT activity was reliably detected by

FCM and AktAR2-based reporters.

With the PKA reporter, we found a particular mechanism by

which BCR signaling and PKA activity are interconnected. In its func-

tion as a negative regulator of BCR signaling, PKA activity is increased

by cAMP after BCR signaling, perhaps through PTGER4, which is

strongly induced by BCR crosslinking (69). PTGER4, a receptor for

prostaglandin E2, generates cAMP in B cells (70) and has a negative

effect on the proliferation of normal mouse B cells and human B cell

lymphoma, for which it may function as a tumor suppressor (69).

However, we found another mechanism by which BCR signaling acti-

vates PKA, enabling it to function as a negative regulator of BCR sig-

naling: PKA phosphorylation by BCR-activated SYK. Previous reports

differed as to whether phosphorylation of the PKA catalytic subunit,

likely at Y330 and mediated by SYK in B cells, was activating (49) or

inhibitory (48) of PKA kinase activity; our reporter studies showed

that inhibition of SYK, which is activated by both tonic and antigen-

induced BCR signaling, inhibited PKA activity in GCB-DLBCL lines.

An exciting possibility suggested by our studies is that cells could

be sorted on the basis of functional difference detectable by a real-

time assay based on SU-FRET. The example that we modeled was one

that could be used to detect genes involved in the increase of AKT

activity by acute BCR stimulation; after introduction of a library of

gRNA species, cells with less BCR-induced increase in SU-FRET from

a live AKT reporter could be sorted and analyzed for their gRNA com-

position, thus implicating genes necessary for the normal increase. It

is plausible that a similar screen could be done with reporters specific

for other kinases, or with other types of stimuli. Our example was

somewhat complicated by not being able to achieve KO in all cells for

some targeted genes, but in effect the resulting mixed cultures pro-

vided further evidence that SU-FRET can detect and discriminate the

effect of KO in individual cells on the basis of FRET. Similarly, an

actual full-library screen might suffer from incompleteness of KO for

certain gRNA species targeting phenotype-essential genes, but that

would not affect the true positivity of their representation in the pop-

ulation of cells sorted on the basis of SU-FRET.

The most prominent limitation of reporter assays is that cells must

be engineered to express the reporter construct; this requires time and

effort in advance of its use, may have unknown artifacts or non-

physiologic aspects, and excludes certain applications, such as analysis

of primary tumor or tissue samples. The results are also limited to pro-

viding an assessment of relative changes in activity of the enzyme inter-

rogated, and not an absolute measure in biochemical terms. In addition,

the performance of kinase activity reporters is highly dependent on the

target peptide for specificity, and on subcellular localization for sensitiv-

ity. Specificity is an issue that has levels of complexity; in the case of

AKT, AktAR2-based reporters are presumed to report on the combined

activity of all AKT isoforms (although this has not been established),

which is generally desirable but makes them unsuitable for studies of

specific AKT isoforms. Similarly, the different isoforms of PKA are pre-

sumably all capable of phosphorylating the target peptide used in

AKAR2, but it is well-known that PKA activity is often compartmental-

ized by A-kinase anchoring proteins (AKAPs); reporter localization,

which is controlled by the Lyn peptide tag in our reporters, may there-

fore be especially important. In all cases, it is important to establish that

a particular reporter performs as expected, reporting faithfully on activ-

ity of the kinase(s) in question; genetic and pharmacologic manipulations

are important in this process, and validated the target peptides that we

used respectively for AKT and PKA.

Among other limitations of our kinase reporter assays, using

reporter phosphorylation (as reflected by FRET) to measure kinase activ-

ity depends on the assumption that reporter dephosphorylation is insig-

nificant or unchanged between conditions being compared. This may

not always be the case; we observed a rapid decline in E from the active

AKT reporter after AKT inhibition, implying that the E value reflects a

balance between reporter phosphorylation and active dephosphoryla-

tion. However, even if a change in E is not solely due to kinase activity

(i.e., is affected by a change in dephosphorylation), the reporter may ulti-

mately provide relevant information about the net activity of the path-

way in question. Finally, while it is advantageous that the reporter assay

works well in live cells, we found that it does not work reliably in fixed

cells (data not shown), limiting the collection of samples at different

times for later batch analysis, although we did find that reporter signal

was stabilized by keeping cells in the cold.

In summary, we have provided methods and applications that

illustrate and extend the use of flow cytometry to measure FRET in

live cells.
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