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Introduction
The immune system has emerged as a key player in the 
direction of cancer progression, displaying both pro- and 
antitumor capabilities as well as the capacity to be leveraged 
for treatment. To fully tease apart the interaction of immune 
cells within tumor microenvironments, researchers need to 
be able to clearly identify the presence and state of immune 
subpopulations. Conventional flow cytometry has been 
a mainstay of immunophenotyping for decades. Spectral 
flow cytometry, a relatively new approach to fluorescence 
cytometry, is also being used for immunophenotyping 
studies. However, both approaches suffer in the number of 
cell markers that can be incorporated into a single panel 
due to issues of emission spectra overlap. Mass cytometry 
or cytometry by time-of-flight mass spectroscopy (used 
in CyTOF® instruments) has emerged as a critical tool in 
the identification and monitoring of immune cells in the 
research and clinical spaces due to the precision of signal 
detection and lack of anything analogous to spectral overlap.

In contrast to fluorescence cytometry, cells for CyTOF 
analysis are stained with antibodies labeled with heavy 
metal isotopes not endogenous to biological systems. 
Labeled cells are injected as single-cell droplets and passed 
through a hot inductively-coupled plasma to ionize the 
isotope labels of bound antibodies. The ionized cloud 
enters the time-of-flight chamber and, based on the label’s 
atomic mass, the time to reach the detector identifies the 
metal isotopes and associated antibody label with high 
precision. By virtue of this labeling and identification 
technology, CyTOF can incorporate 50 or more cellular 
markers in a single panel with negligible overlap in 
detection. Therefore, CyTOF is ideal for immunological 
studies and monitoring of therapeutic efficacy in clinical 
research. Key benefits are sensitive immunophenotyping 
assays where fluorescence spillover and autofluorescence 
are eliminated as sources of background signal and 
less precious sample is required for analysis.

In this article collection, we provide examples of how CyTOF 
technology allows for a highly precise and informative 
interrogation of immune cells in response to clinically 
relevant treatment approaches. To begin, we present four 
articles illustrating examples of using mass cytometry to 
monitor immune responses to cancer and effectiveness 
of therapeutic interventions in research studies.

First, Pisano et al. (2021) utilized a preclinical model 
of ovarian cancer to examine the immune landscape 
of the ascitic fluid surrounding the tumor and tumor 
nodules. Mass cytometry was able to identify both pro- 
and antitumor activity of immune cells in the ascitic 
fluid and cell populations in the tumor nodules that 
could serve as targets for therapeutic intervention.  

Eiva et al. (2022) further expanded on the use of CyTOF 
for examining ovarian cancer by analyzing biomarkers for 
tumor infiltrating lymphocytes (TILs) and their origin in 
tumor tissue and ex vivo cells. Three identifiable populations 
of TILs were found to differentiate from a subset of CD137 
expressing TILs, thereby indicating that CD137 may be of use 
as a selective biomarker identifying tumor-specific TILs.  

Wang et al. (2020) used CyTOF to gain a better 
understanding of the immune checkpoint signals 
associated with multiple myeloma (MM). They discovered 
a distinct signature pattern of increased activated CD4 
and CD8 T cells, and CD8+ natural killer T-like and NK 
cells in bone marrow of MM patients, providing new 
targets for immune checkpoint blockade therapy.  

Last, Saxena et al. (2021) presented a clinical trial on the 
safety and efficacy of combining an anti-PD-L1 checkpoint 
inhibitor (avelumab) with a hypomethylating agent 
(azacytidine) in the treatment of relapsed/refractory 
acute myeloid leukemia (AML). This method of treatment, 
which primarily targets the PD-L1 ligand, has displayed 
limited ability to treat AML. Mass cytometric analysis of 
bone marrow samples from study participants treated 
with this combination uncovered a previously unknown 
activity of another PD-1 receptor ligand (PD-L2) that 
could potentiate immune evasion or tolerance. This 
suggests that blockade of PD-1 receptor itself instead 
of the ligand may be a more effective treatment.

While all of the above articles provide examples of the 
use of mass cytometry for immune monitoring and 
characterization, recent advances in the technology stand 
to give researchers and clinicians an even deeper and more 
reproducible ability to understand immune system activity.  
The CyTOF XT™ system is the next generation of mass 
cytometry technology, automating many aspects of the 
CyTOF workflow to increase throughput and reproducibility. 
Further, when combined with the Maxpar® Direct™ Immune 
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Profiling Assay™, the use of high-parameter cytometry for 
immune studies that are highly reproducible is facilitated. 
The full advantages of the system and supporting data 
can be found in the provided application note titled 
CyTOF XT: The Next Generation of Mass Cytometry.  

Importantly, mass cytometry has demonstrated multi-site 
reproducibility. To support this, we provide two additional 
publications utilizing CyTOF with the Maxpar Direct 
Immune Profiling Assay. Bagwell et al. (2019) reported the 
findings of a multi-site study for validating the use of the 
assay in identifying immune cell populations from whole 
blood and peripheral blood mononuclear cell samples. 
Each site utilized the same instrumentation and assay 
on the provided samples. The study concluded that the 
Maxpar Direct Immune Profiling Assay can robustly and 
reproducibly detect 37 distinct immune cell populations 
using a 30-marker dry-format panel. Finally, Corneau et 
al. (2021) detailed the customization and validation of a 
Maxpar Direct Immune Profiling Assay based panel for CAR 
T cells and non-CAR cells in peripheral blood to monitor 
the outcomes of CAR T cell therapies in development.

With the ever-increasing complexity of the immune system 
becoming apparent during the development of therapeutic 
interventions, methods to clearly identify and track the 
activity of immune cell types are crucial to determining 
their effectiveness. Mass cytometry stands to revolutionize 
the ability of researchers and clinicians to monitor immune 
responses to therapies in a precise manner not afforded 
by conventional flow cytometry. By providing examples of 
applied mass cytometry for immune monitoring, we hope 
to educate readers on this powerful tool and how it may 
be leveraged for their specific translational and clinical 
research goals. For more information and resources for 
CyTOF, we encourage you to visit the Fluidigm Maxpar 
Direct Immune Profiling System and CyTOF XT webpages.

By �Jeremy Petravicz, Ph.D., Editor,  
Current Protocols
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Abstract
Background: Ovarian cancer (OC) is typically diagnosed late, associated with
high rates of metastasis and the onset of ascites during late stage disease. Under-
standing the tumormicroenvironment and how it impacts the efficacy of current
treatments, including immunotherapies, needs effective in vivo models that are
fully characterized. In particular, understanding the role of immune cells within
the tumor and ascitic fluid could provide important insights into why OC fails to
respond to immunotherapies. In this work, we comprehensively described the
immune cell infiltrates in tumor nodules and the ascitic fluid within an opti-
mized preclinical model of advanced ovarian cancer.
Methods: Green Fluorescent Protein (GFP)-ID8 OC cells were injected
intraperitoneally into C57BL/6 mice and the development of advanced stage OC
monitored. Nine weeks after tumor injection, mice were sacrificed and tumor
nodules analyzed to identify specific immune infiltrates by immunohistochem-
istry. Ascites, developed in tumor bearing mice over a 10-week period, was char-
acterized by mass cytometry (CyTOF) to qualitatively and quantitatively assess
the distribution of the immune cell subsets, and their relationship to ascites from
ovarian cancer patients.
Results: Tumor nodules in the peritoneal cavity proved to be enriched in T cells,
antigen presenting cells and macrophages, demonstrating an active immune
environment and cell-mediated immunity. Assessment of the immune landscape
in the ascites showed the predominance of CD8+, CD4+, B–, and memory T
cells, among others, and the coexistance of different immune cell types within
the same tumor microenvironment.
Conclusions:We performed, for the first time, amultiparametric analysis of the
ascitic fluid and specifically identify immune cell populations in the peritoneal
cavity of mice with advanced OC. Data obtained highlights the impact of CytOF
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as a diagnostic tool for this malignancy, with the opportunity to concomitantly
identify novel targets, and define personalized therapeutic options.

KEYWORDS
ascites, CyTOF, immunotherapy, mass cytometry, model, ovarian cancer, peritoneal cancers

1 INTRODUCTION

Ovarian cancer (OC) is the 7th most common cause of
death in women worldwide, with over 21 000 new cases
expected in the United States in 2020.1 Survival rates vary
according to the stage of disease, with a 5-year survival rate
of around 30% for advanced cancers,2,3 the most common
ofwhich is high-grade serous ovarian carcinoma (HGSOC)
accounting formore than 50% of cases. Unfortunately, only
33% of OC cases are identified early, the majority being
diagnosed at a later, more advanced stage, and associated
with a significantly worse prognosis.4
According to the National Comprehensive Cancer Net-

work (NCCN) guidelines, the standard of care ther-
apy for HGSOC involves debulking surgery followed
by platinum- or taxol-based chemotherapies. Among
other recommended treatments, liposomal doxorubicin
is a viable option for both early and advanced-stage
disease.5 Targeted therapeutic approaches, recently added
to standard clinical practice, provide improved sur-
vival rates and include: vascular endothelial growth fac-
tor (VEGF)-A inhibitors,6 and poly (ADP-ribose) poly-
merase (PARP) inhibitors, which are indicated for patients
with a BReast CAncer gene (BRCA1/2) mutation.5 OC
remains a complex disease to treat, owing to the high
chemotherapy-resistance emergence rate,7 and in recent
years great emphasis has been placed on the employ-
ment of immunotherapies to combat this issue, although
currently no clinically approved immunotherapy for
HGSOC exists. Modest activity within recurrent OC
patients (which included epithelial, fallopian, or pri-
mary peritoneal OC) has been reported in the Phase II
KEYNOTE-100 study for the checkpoint inhibitor (CPI)
Pembrolizumab.8 Additionaly, several Phase III trials are
exploring the combination of CPI with PARP or VEGF
inhibitors to determine any therapeutic synergies.9
Limited immunotherapy efficacy observed to date, how-

ever, could be explained by the typically “cold” immune
status of OC. Indeed, the advanced OC tumor microen-
vironment (TME) is characterized by a lack tumor infil-
trating lymphocytes (TILs) and failed T-cell priming due
to a combination of poor antigen presentation and an
intrinsic insensitivity to T-cell killing.10,11 More specifi-
cally, tumor growth is associated with a scarcity (if not

total absence) of CD8+ T cells within the TME,12 or the
inability of dendritic cells (DCs) to effectively present
antigen and stimulate a cytotoxic response.13 One of the
possible mechanisms behind DC inactivation has been
provided by Cubillos-Ruiz et al.14 The authors demon-
strated that the reduced capability of DC to support an
anticancer immune response is associated to the tran-
sient, yet abnormal lipid accumulation in the endoplas-
mic reticulum, which obstructs their normal antigen-
presenting capacity.14 Another factor proposed to play a
role in ovarian cancer progression at advanced stages and
resistance to immunotherapy is the presence of transform-
ing growth factor-β (TGF-β). Specifically, TGF-β is a potent
immunosuppressor within the tumor environment being
involved in several tumor-associated processes, includ-
ing the increase of the epithelial to mesenchymal transi-
tion, the promotion of angiogenesis and immune suppres-
sion. The enhanced secretion of TGF-β within the tumor
microenvironment is associated to the recruitment of reg-
ulatory T cells via expression of FoxP3, which ultimately
results in diminished cytotoxic T-lymphocytes and in a
reduced presence of DCs.15,16 There is, however, a paucity
of evidence on the specific roles of immune cell popula-
tions within the OC TME. Hence, a more comprehensive
understanding of the immune cell landscape would pro-
vide an important platform for the development of more
efficacious immunotherapeutic strategies.
The accumulation of fluid within the peritoneal cav-

ity (ascites), which contains a variety of soluble and
cellular components, is characteristic of advanced stage
OC. Indeed, more than one third of OC patients present
with ascites at diagnosis, which has been correlated with
its spread within the peritoneal cavity and poor patient
prognosis.17 The accumulation of ascites occurs as a con-
sequence of unbalanced drainage of the peritoneal cav-
ity, due to obstruction of the lymphatic system by cancer
cells,17 or by increased leakage of fluid from the microves-
sels lining the peritoneum.18 Ascites build-up also con-
tributes to malignant progression by facilitating multifocal
cancer cell dissemination on the peritoneal surface.19 The
presence of an intraperitoneal ascitic current, which acts
as a means of transport of OC spheroids, further facilitates
peritoneal, lymphatic, and hematogenous metastasis,20 a
phenomenon that falls within the multistep process of
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metastatic dissemination. Soluble and cellular compo-
nentswithin the ascitic fluid have also been shown to influ-
ence metastatic behavior.17 Soluble components, includ-
ing growth factors, cytokines, chemokines, and extracel-
lular matrix pieces, inhibit T helper cell proliferation21
and DC maturation22 mediated by IL-10. Cellular compo-
nents, such as resident tumor cells or tumor-associated
fibroblasts, or nonresident immune cells, on the other
hand, have a wide ranging impact on the TME. The
presence, functionality, and effect of specific, singularly
taken immune cell populations within the ascitic fluid has
beenwidely described, unraveling the association between
the presence of tumor-infiltrating CD8+ T cells and the
prolonged disease-free survival,23 or unmasking the role
of T regulatory cells in creating an immunosuppressive
environment.24 As such, ascites represents a potentially
very informative source of information regarding the effect
of immune cells on metastatic disease progression. More-
over, its presence in over 30% of patients at diagnosis ren-
ders it an important issue to tackle and explore. Hence, a
complete profiling of the ascites immune content would
prove useful if done on patients in a tailored fashion. How-
ever, fundamental research on the biological interactions
of the components of advancedOC ascites requires reliable
in vivo models.
In this study, we optimize the development of an

advanced OC model in immunocompetent mice to fill the
gap in the understanding of the immune landscape within
the peritoneal cavity. For the first time, we apply mass
cytometry to comprehensively describe the immunological
TME within the ascites and to provide insights about the
effectiveness of the selected preclinical model in reproduc-
ing the human tumor immunomicroenvironment. Finally,
we propose mass cytometry as an accurate strategy for the
development of personalized strategies against advanced
OC and all cancers metastasizing within the peritoneal
cavity.

2 METHODS

2.1 Cell line

The ID8 cell line, originated from mouse ovarian sur-
face epithelial cells (MOSEC), was purchased fromMerck-
Millipore. Cells were cultured in High Glucose Dulbecco’s
Modified Eagle medium (HG-DMEM) (Sigma) supple-
mentedwith 10% fetal bovine serum (FBS, ThermoFisher),
5 μg/mL insulin, 5 μg/mL transferrin and 5 ng/mL sodium
selenite (1× ITS, Sigma) and 1× Penicillin-Streptomycin
Solution (Sigma). Culture conditions were 37◦C in a
humidified 5% CO2 atmosphere.

2.2 Lentivirus transduction, lentiviral
infection of ID8 cells with the luciferase
vector and cell line selection

The ID8-Luc/GFP cell line was generated by transduction
with Lentivirus particles containing the CMV promoter
for the expression of humanized firefly luciferase (hLUC)
and the SV40 promoter for the expression of GFP pro-
tein according to manufacturer’s protocol (GeneCopoeia).
Briefly, ID8 cells were plated at 2 × 104 cells per well (12-
well plate, Corning) and incubated overnight at 37◦C in a
humidified 5% CO2 atmosphere. Cells were then infected
with 10 MOI of Lenti-PAC™ plasmid mix (GeneCopoeia
Inc.) in the presence of 8 μg/mL polybrene (Sigma). After
overnight incubation at 37◦C/5% CO2, the viral super-
natant was discarded, and cells were washed with 1×
PBS (ThermoFisher) prior to the addition of warmed HG-
DMEM media. Three days after infection, cells with high
levels of GFP expression were selected by Cell Sorter NIR
Aria II (BD Bioscience) and expanded for a week in HG-
DMEMmedia in presence of 1 μg/mL puromycin (Invitro-
gen) to further select transfected cells and generate a stable
cell line.

2.3 In vivo propagation of ID8-GFP
tumors

Female C57BL/6 (5-6 weeks old) were purchased from
the Charles Rivers laboratories. All animal studies were
carried out in accordance with guidelines determined by
the Animal Welfare Act and the Guide for the Care and
Use of Laboratory Animals and complied with protocols
approved by the Institutional Animal Care and Use Com-
mittee at the Houston Methodist Research Institute (AUP-
0219-0013). Briefly, C57BL/6 female mice were divided into
3 groups (n = 5 mice per group) and injected intraperi-
toneally with 5× 106, 1× 107, or 1.5× 107 ID8-Luc/GFP cells
in 200 μL of PBS. Cells were injected into the lower right
quadrant of the abdomen. Mice weights (g) were recorded
daily following ID8-Luc/GFP cell injection and plotted as
fold change. Representativemacroscopic images of tumors
and ascites development were taken with a smartphone
camera.

2.4 Bioluminescence, imaging, and
tumor localization within the abdominal
cavity

To track tumor growth, luciferase luminescence was
detected using a Xenogen IVIS Spectrum imaging system
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(PerkinElmer) as previously described.25 Briefly, 200 μL
of 15 mg/mL D-luciferin was injected into the mice
abdomen and the bioluminescent signal evaluated after
10 min to obtain the peak photon emission per sec-
ond. The signal was quantified using the Living Image
software (PerkinElmer) and the total photon flux emis-
sion (photons/second) in the regions of interest (ROI)
recorded, starting at day 8 after tumor cell injection.
Images were normalized using the Living Image software
(PerkinElmer)with aminimumandmaximum radiance of
1.7 × 104 and 9.7 × 104 photons/s, respectively.

2.5 Hematoxylin and eosin (H&E)
staining and immunohistochemistry (IHC)

Sixty-three days after ID8-Luc/GFP cell injection, mice
had a strong tumor signal intensity by IVIS. Hence, mice
were sacrificed and the peritoneal membrane, abdominal
tumors, and liver were sampled, fixed in 4% paraformalde-
hyde solution overnight, and embedded in paraffin. Paraf-
fin embedded tissues were subsequently sectioned at a
thickness of 5 μm and hematoxylin and eosin (H&E) stain-
ing performed to enable general inspection of the tissues.
The 5 μm thick sections were also used for immunohisto-
chemical staining. Sections were incubated with primary
anti-CD3 (rabbit, Dako), anti-MHC-II (rat, eBioscience), or
anti-F4/80 (rat, BioRad) for 1 h at room temperature (RT)
in a moist chamber. Sections were imaged with a EVOS R©
FL Auto Imaging System (Life Technologies).

2.6 Ascites extraction and mass
cytometry by time of flight (CyTOF)
analysis

Seventy days after tumor cell injection with 1 × 107
ID8-Luc/GFP cells, mice started developing ascitic fluid.
Ascites onset was detected by abdomen palpation, by
eye and by weight increase. After reaching a weight of
30 g, three mice were sacrificed, and the ascetic fluid
collected by syringe suction following abdominal incision.
Ascitic fluid was centrifuged, and red blood cells lysed
by incubation in Ammonium-Chloride-Potassium (ACK)
lysing buffer (ThermoFisher) for 10 min at RT. Immune
cell enrichment was achieved using Percoll gradient
centrifugation. Briefly, the cell pellet was resuspended
in 85% Percoll (GE Healthcare), then carefully layered
onto 50% Percoll and centrifuged at 620 × g without the
brake for 30 min at 4◦C. After centrifugation, three layers
of cells were present. The middle layer, consisting of the
immune cells of interest, was recovered and used for
mass cytometry staining. Cell viability was determined

TABLE 1 Panel of the antibodies selected for mass cytometry,
CyTOF. List of the 33 antibodies used, and their metal conjugation

Target Metal tag
CD45 Pr141
MHC II Nd142
CD11b Nd143
Ly6C Nd144
Ly6G Nd145
F4/80 Nd146
CD11c Sm147
CD38 Nd148
Arg-1 Sm149
SiglecF Nd150
CD206 Eu151
CD62L Sm152
CD103 Eu153
iNOS Sm154
PD-L1 Gd155
TNFa Gd156
CD64 Gd158
TCRgd Tb159
Foxp3 Gd160
RORgt Dy161
CD8α Dy162
Tbet Dy163
CD25 Dy164
IFN-γ Ho165
CD44 Er166
CD86 Er167
CD80 Er168
PD-1 Tm169
B220 Er170
NK1.1 Yb171
CD19 Yb173
CD4 Yb174
TCR β Lu175

by incubation with 25 μM cisplatin for 5 min. At these
conditions, cisplatin preferentially reacts with proteins in
dead cells and it widely established as a viability reagent
for mass cytometry.26 After washing in Maxpar R© Cell
Staining Buffer (Fluidigm), cells were resuspended in 40
μL surface-staining antibody (Ab) mix and incubated at
RT for 30 min. Antibodies were purchased from Biolegend
(except for Arginase-1 and NOS2, which were purchased
from eBioscience) and conjugated to the metals using
the Maxpar R© X8 Multimetal Labeling Kit (Fluidigm).
Selected Ab are shown in Table 1. Cells were then washed
2× and fixed with 100 μL of Fix/Perm buffer (eBioScience)
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for 10 min, followed by the addition of 200 μL Perm buffer
(eBioScience) for 10 min. The intracellular staining was
performed by diluting cells in 50 μL Ab mix and incubat-
ing them at RT for 60 min. After the washing steps, the
cell ID DNA intercalator (500 μM, Fluidigm) was added
to cells in a 1:1000 dilution for 30 min at RT. Cells were
then washed, counted, and filtered through blue-capped
tubes (35 μm) before resuspension in 50 μl deionized
water and the addition of 50 μl of EQ-beads (eBioScience).
Samples were acquired by Helios CyTOF machine. A total
of 100 000 events were recorded for each sample, and
subsequently analyzed on Cytobank. Immune cell pop-
ulations were identified by manual gating. The intensity
of the signal in the viSNE plots obtained was divided into
three main groups. The following thresholds were used for
categorization of the immune cell subtypes and applied
to each specific viSNE plot: if the majority of the region
was in the high range of expression (the red colored area,
with numerical values varying according to the analyzed
marker), the marker was considered highly expressed
(++); if the region was in the middle range of expression
(color-coded azure to orange) then the marker was con-
sidered to be moderately lowly expressed (+). Finally, if
the area exhibited mostly lower expression (indicated by
blue and dark blue colors), markers were considered not
expressed (−).

2.7 Statistical analysis

Statistical analysis was performed by ANOVA for all
experiments that required it. More specifically, a two-way
ANOVA with post hoc Dunnett comparisons to week 1 or
Day 0 was employed for tumor signal and tumor weight
analyses, respectively. Data with a P < 0.05 were consid-
ered significant (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001). All
results were obtained from independent experiments and
expressed as the mean± standard deviation (SD).

3 RESULTS

3.1 Tumor model optimization

After ID8-Luc/GFP cells (5 × 106, 1 × 107 or 1.5 × 107) were
intraperitoneally injected, tumor growthwas assessed over
a 9-week period. After 9 weeks, animals injected with
1 × 107 cells showed a 13.6 ± 9 fold increase in tumor
growth, based on fluorescence signal, compared to week
1 (P < 0.001), as quantified by IVIS (Figure 1A). Mice
injected with 5 × 106 or 1.5 × 107 cells showed a 8.2 ± 4
fold and 5.6 ± 43.9 fold increase in tumor growth, respec-
tively, again based on fluorescence signal, compared to

week 1 (P < 0.001). No differences in tumor growth were
noted between the three treatment groups, although all
three groups showed increased tumor size over time. Rep-
resentative pictures of the signal produced by the tumor
within the abdomen are shown in Figure 1B. Figure 1C
shows the fold variation of mice weights over the 9-week
period, indicating a correlation between tumor growth and
mouse weight, which was particularly evident following
injection of 1 × 107 or 1.5 × 107 cells. Statistical difference
was seen within groups at different time points when com-
pared to the day of injection (P < 0.001). This difference
becamemoremarked after day 23 days in 5× 106 group and
after 37 days in 1 × 107 group. No statistically significant
intragroup differences were recorded in 1.5 × 107 group.
Sixty-three days after tumor cell injection, mice were sac-
rificed and organs extracted to better localize the tumors
within the abdomen. ID8-Luc/GFP cells were identified
in several abdominal organs including liver, kidneys, and
spleen, and multiple tumor nodules/formations were ran-
domly distributed around the abdominal cavity within the
peritoneum (Figure 1D).

3.2 Histological analysis of liver and
tumor nodules

Tumors, extracted at day 63 after intraperitoneal injec-
tion, were processed and stainedwithH&E. Tumor growth
occurred in two main areas; firstly the inner surface of the
peritoneal membrane, as can be inferred from nodules vis-
ible inmice from the 1× 107 group (Figure 2A), and second,
the abdomen, wheremultiple tumormasses were found in
multiple organs of the lower abdomen (Figure 2B). H&E
staining of the liver, peritoneal membrane, and tumor
masses within the abdominal cavity shows the presence of
tumor growth within all three treatment groups and illus-
trates the extent of tumor infiltration throughout the peri-
toneal cavity (Figure 2C).

3.3 Immunohistochemistry of immune
infiltrates within tumors

Tissue sections were also analyzed by immunohistochem-
istry (IHC) to identify immune cell infiltration within
tumors found on the peritoneal membrane. The presence
of cell surface markers for T cells, antigen presenting
cells (APC), and macrophages (CD3, MHC-II, and F4/80,
respectively) was investigated in mice from all treatment
groups (Figure 3). Significant immune cell infiltration was
apparent in tumors present in all the treatment groups. Of
note, therewere high numbers of T cells andmacrophages,
indicating an active immune environment.
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F IGURE 1 Tumor model generation and optimization. (A) Tumor growth signal quantification over a 9-week period by IVIS following
injection of 5 × 106, 1 × 107, or 1.5 × 107 cells (n = 5). (B) Representative IVIS images of each tumor group taken after 6 weeks from tumor cells
injection. (C) Mice weights (grams), expressed as fold change, during the 9-week experimental period (n = 5). (D) IVIS images of organs
extracted from the mice abdomen 9 weeks after injection with 5 × 106, 1 × 10 7, or 1.5 × 107 ID8-Luc/GFP cells. Extracted organs include liver,
spleen, kidneys, lungs, heart, peritoneal membranes, tumor nodules. Epi-fluorescent signals reflects the presence of ID8-Luc/GFP cells. Data
are expressed as mean (SD) from 5 independent experiments. Data were analyzed by ANOVA and Dunnett’s pairwise multiple comparison
test; values differ from week 1 (A) or day 0 (C), *P < 0.05, **P < 0.01, ***P < 0.001
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F IGURE 2 Histological assessment and localization of tumor nodules within the peritoneal cavity. (A) Representative images of tumor
growth on the peritoneal membrane (green arrows). (B) Representative images of tumor growth within the lower abdominal cavity, indicated
by the green arrow in the inset image. (C) H&E staining of tumor nodules found in the liver, peritoneal membrane, and abdominal cavity
(black arrows). Magnification: 10×, scale bar: 400 μm

A similar trend of immune cells recruitment to the
tumor masses was observed in the cancerous fragments
extracted from different areas of the abdominal cavity. Fig-
ure 4 shows a strong presence of immune infiltrates despite
the varied histological landscapes of the tissues examined.

3.4 Immune characterization of ascites
through mass cytometry (CyTOF)

To obtain a better understanding of the immune landscape
of our metastatic OC model, immune cell populations

within the ascites of tumor-bearing mice were analyzed
by mass cytometry. Seventy days after tumor cell injection,
ascitic fluid formation resulted in a swollen abdomen
that was apparent and palpable (Figure 5A). Differen-
tial expression analysis of specific immune cell surface
markers (Table 1) present on CD45+ cells within ascitic
fluid was performed through mass cytometry (CyTOF)
analysis. Results from this analysis are plotted onto a
viSNE graph (Figure 5B) that plots CD45+ cells on a
two-dimensional map and identifies individual cells by
their expression of the specific immune cell markers cho-
sen (for gating strategy, see Figure S1). From these data,
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F IGURE 3 Identification of immune cell infiltration within tumors of the peritoneal membrane. Representative IHC images of each of
the experimental groups showing the presence of CD3+, MHC-II+, and F4/80+ cells (T cells, APC, and macrophages, respectively) within
tumors on the peritoneal membrane. Black arrows indicate the tumor masses. Magnification: 20×, scale bar: 200 μm

immune cell population percentages and numbers can be
derived (Figure 5C) enabling a comprehensive analysis
of the ascitic fluid immune cell population. Within the
present study, the most abundant cell populations in the
ascitic fluid of tumor-bearing mice were B cells (27.3.6%
± 9.6%), CD8+ T cells (38.5% ± 4.5%), and CD4+ T cells
(20.7% ± 3.5%), with myeloid immune cells, including
monocytes, macrophages, DCs, eosinophils, and neu-
trophils accounting for the remaining 15% of the total cell
population.
Further characterization revealed the presence of spe-

cific subpopulations among CD8+ and CD4+ T cells (Fig-
ure 5D). Specifically, based on their expression of specific
markers we identified the presence of (i) memory CD8+
T cells (Ly6C+/CD44+, 23.1% ± 12.1%), (ii) T helper cells
(IFNγ+/CD4+, 22.2% ± 15.3%), and (iii) cytotoxic T lym-
phocytes (CTL, IFNγ+/CD8+, 12.5% ± 9.05%). In addition,
low expression of PD1 in 8.03%± 7.4% of CD4+ T cells and
2.3% ± 1.5% of CD8+ T cells was noted indicating a low
level of T-cell exhaustion. The percentages of remaining
CD8+ and CD4+ T cells with no identified subpopulations
were 61.9% ± 24.3% and 69.7% ± 28.5%, respectively. The
CD8+/CD4+ T-cell ratio was 1.65, indicating a prevalence

of CD8+ T cells, while the relative percentages of T helper
and CTL cells (4.6% ± 3.1% and 4.85% ± 3.4%, respectively)
were similar.
Table 2 shows the list of all markers identified in each

immune cell population and differentiates them based
on the level of expression (see Section 2.6). For instance,
the B-cell group is characterized by the high expression
of the markers CD38, B220, MHC-II, CD19, and CD80.
In addition, CD25, PD-L1, and PD-1 are found to be
expressed by both B cells and CD4+ and CD8+ cells at
high and low expression levels, respectively. CD4+ and
CD8+ cells share high expression levels of TCRβ and
IFN-γ (in addition to the cell specific markers CD4 and
CD8α, respectively), with Ly6C, Tbet, CD25, and CD103
being specifically expressed by the CD8+ population. Treg
cells express high levels of Foxp3, CD25, CD4, and CD44
markers among others, with CD44 being also present in
eosinophils, NK cells, monocytes, macrophages, DCs, and
neutrophils. Macrophages show high expression of F480
and share with monocytes the moderate to low expression
of CD11b, TCRgt, CD64, and CD80. Similarly, the presence
of CD11b, Ly6C, and Ly6G is observed in both, eosinophils,
and neutrophils.
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F IGURE 4 Identification of immune cell infiltrates within abdominal cavity tumors. Representative IHC images of CD3+, MHC-II+,
F4/80+ cells (T cells, APC, and macrophages, respectively) within tumor nodules (indicated by black arrows) found within the abdominal
cavity. Magnification: 20×, scale bar: 200 μm

To complement the information provided in Table 2
and visualize the immune cell marker expression, data
from the CyTOF experiments were arranged into sub-
groups according to marker expression and their associ-
ation with specific cell types (Figure 6). Several immune
markers were associated with more than one cell popula-
tion; however, the three main cell types identified were:
B cells; CD4+ and CD8+ T cells; neutrophils, eosinophils,
macrophages, monocytes, and dendritic cells. The expres-
sion of CD62L, iNOS, and CD206 was not apparent on any
cell population.

4 DISCUSSION

The treatment of advanced OC is challenging, espe-
cially considering the altered physical transport properties
that create an immunosuppressive environment27,28 and
limit responsiveness to current immunotherapy strategies.
Efforts to optimize animal models that comprehensively
mimic cancer development in vivo and thus enable new
therapeutic strategies to be tested are ongoing. In this con-
text, the mouse ovarian surface epithelial cell line (ID8

cell line) is widely used to generate preclinical models of
advanced OC. This is due to its capacity to closely repro-
duce the histopathological nuances that are characteris-
tic of patients with advanced OC. These include tumor
dissemination across the peritoneal cavity, a specific pat-
tern of invasion and the formation of ascites, which fur-
ther increases the metastatic process and hinders therapy
effectiveness.29 In addition, ID8 cells have been found to
express Pax8,30 a member of a transcription factor family
that has also been linked to a role in OC development.31
Lastly, the immunological nature of ID8-based OCmodels
further increases their clinical relevance as they also allow
for the testing of innovative immunotherapies with the
potential to treat this malignancy. As such, ID8 cells have
beenwidely used to test different hypotheses. For example,
Wilson et al used the ID8 model to track nuclear factor-
kappa B (NF-κB) signaling during cancer progression,32
while Zhang et al used ID8 cells stably expressing the vas-
cular endothelial growth factor to demonstrate increased
tumor-progression rate and ascites formation.33 However,
some doubts about the stability of this cell line have been
raised, since the onset of ascites has been reported to alter
the efficacy of the bioluminescent signaling associated to
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F IGURE 5 Characterization of immune cell populations in ascites. (A) Representative image of ascites formation in tumor-bearing
C57BL/6 mice 70 days after tumor cell injection. (B) visNE plot obtained by mass cytometry depicting the most represented immune cell
populations in ascites collected from tumor-bearing mice (n = 3). (C) Immune cell populations identified from the mass cytometry analysis as
a percentage of the total cells. (D) Percentages of CD4+ and CD8+ T-cell subtypes, which are mainly CD4+/CD8+/IFNγ+,
CD4+/CD8+/PD1+, or CD8+/LyC6+/CD44+. Data presented are mean (SD)

ID8-Luc/GFP cells.34 Moreover, despite ID8 cells being
considered the gold standard when generating advanced
OC in immune competent mice,35 the scientific commu-
nity is yet to provide robust protocols, nor a consensus
on optimal cell concentrations and incubation times for
tumor development. In particular, the literature reports a
wide range of ID8 cell concentrations being peritoneally
injected (between 1 × 106 and 1 × 107),32,36–39 and different
incubation times required to develop a noticeable tumor
and ascites in immunocompetent mice.34,39
In this work, we tested three concentrations of ID8-

Luc/GFP cells (5 × 106, 1 × 107, or 1.5 × 107 cells) for
their capacity to develop an advanced tumor in immune-
competent mice after intraperitoneal injection, with the

aim of identifying a robust, reproducible protocol for
tumor development. The range of concentrations selected
was based on the most remarkable results found in lit-
erature, that is, significant tumor and acsities develop-
ment. Our results demonstrated significant tumor growth
over a 9-week period for each of the cell concentrations
tested, suggesting the suitability of these cell concentra-
tions to reliably create a tumor in vivo. Additionally, the
onset of asciteswas confirmed between 70 and 80 days after
cell injection, which was associated with increased mouse
weight providing an indication of advanced stage disease.
H&E staining confirmed the presence of distinct tumor

nodules on the liver, scattered across the abdominal cav-
ity and lining the peritoneal membrane. No differences in
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F IGURE 6 viSNE plots for 33 immune markers. From the CyTOF analysis of the 33 immune cell markers, three main immune cell
populations were identified based on the coexpression of specific markers. B cells: CD38+/B220+/MHC-II+/TNFα+/CD19+/CD80+. T cells
(CD4+ and CD8+): CD25+/PD-L1+/ PD-1+ have been colocalized on both, CD4+ and CD8+ cells, which also express subgroup-specific
markers TCRβ, IFN-γ, CD4, CD8α, Tbet, and CD103. The third subgroup is represented by neutrophils, eosinophils, macrophages, monocytes,
and dendritic cells, which are specifically positive for NK1.1, CD11c, Ly6G, SiglecF, and FoxP3. The markers CD86, F480, CD11b, and CD64 are
shared with the B cells subgroup, whereas RORgtm Ly6C, TCRgt, and Arg-1 are shared with the CD4+/CD8+ cell subgroup
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TABLE 2 Expression level of markers identified in each immune population found in the ascitic fluid

B cells
CD8+
cells

CD4+
cells

T
regulatory

NK
cells Monocytes Neutrophils Eosinophils Macrophages

Dendritic
cells

CD38 ++ − − + − + + − + +
B220 ++ − − − − − − − − −
CD25 + + − ++ − − − − − −
TCRb − ++ ++ ++ − − − − − −
IFN-γ + ++ ++ − − − − − − +
MHC-II ++ − − + − − − − + +
TNF-α + − − − − − − − − −
PD-L1 ++ + + + − − − − + +
CD4 − − ++ ++ − − − − − −
Tbet − + − − + − − − − ++
CD19 ++ − − − − − − − − −
CD80 ++ − − − − + + + + −
PD-1 + + + + − − − − − −
CD8a − ++ − − − − − − − −
CD103 − + − + − − − − − −
CD86 + − − + − + + + − −
F480 − − − − − + + + ++ −
CD45 − − − − − − − − − −
RORgt − + − − − − − + − −
Ly6C − + − − − ++ ++ ++ − −
CD11b + − − − − + ++ ++ + ++
CD64 − − − − − + − − + −
CD44 ++ ++ + ++ ++ ++ ++ ++ ++ ++
TCRgt − − − − − + + + + −
Arg-1 − − − − − − − − − −
NK 1.1 − − − − ++ − − − − −
CD11c − − − − + − − − − ++
Ly6G − − − − − − ++ ++ − −
SinglecF − − − − − − − ++ − −
Foxp3 − − − ++ − − − − − −
iNOS − − − − − − − − − −
CD62L − − − − − − − − − −
CD206 − − − − − − − − − −

The immunemarkers were assigned to each category of CD45+ cells according to their expression levels in that specific subpopulation.Marker intensity thresholds
used to discern between high and low marker expression are reported in Section 2.6 of methods. ++: high expression, +: intermediate expression, –: lack of
expression. iNOS, CD62L, and CD206 were not expressed on any cell population within the ascites.

the number or size of nodules between the experimental
groups was evident microscopically. Thus, further char-
acterization to assess the immune environment within
the tumor nodules was undertaken. In agreement with
the existing literature on immune cells present within
the OC TME,40 immunohistochemical analysis showed T
cells and antigen presenting cells (macrophages and DCs)
distributed throughout tumor nodules found on the sur-
face of the peritoneal membrane and scattered within the

abdomen. The presence of CD3+ tumor infiltrating lym-
phocytes (TILs) has been identified as an independent
prognostic factor in patients with epithelial OC.41–45 In
addition, antigen presenting cells such as tumor associ-
ated macrophages (TAMs) and DCs have significant roles
in the TME. In particular, TAMs, the most represented
cell population,46 have the potential to suppress or stimu-
late an anticancer response according to the effect the sur-
rounding microenvironment exerts on them.47,48
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F IGURE 7 Schematic of ascites immune cells and their interactions with the tumor. The interactions between ascites immune cells and
their potential effect on tumor cells. B220+/CD11b+/CD38+ B lymphocytes (A) and their CD25+/CD119+ regulatory B-cell subgroup (B)
exert antitumor and protumor activity, respectively. The role of CD4+ (C) and CD8+ (D) T cells in exerting cytotoxic activity towards the
tumor is linked to the antigen presenting capacity of CD11b+/CD11c+/CD44+ DCs (E). Eosinophils (G) and neutrophils (F) are linked to
protumoral and antitumoral properties, respectively. In parallel, monocytes and macrophages (H-J) exert either a tumor promoting or
suppressive effect according to the surrounding microenvironment

Focusing on the ascites, which is closely linked to an
altered immune environment within the peritoneal cavity
of advanced OC patients, further characterization was
undertaken. To comprehensively analyze the immune
landscape of the ascitic fluid collected from an ID8
ovarian cancer model, for the first time we exploited
mass cytometry. The 33 immune cell markers analyzed
allowed for the specific identification of distinct immune
cell populations and their linkage to pivotal functions
with respect to tumor progression. Compared to the
review from Wertel et al mentioned above, our results
showed similar overall percentages of CD8+ T cells, in
contrast with the lower percentages of CD4+ T cells and B
cells.49 The CD8+/CD4+ T-cell ratio of 1.76 we identified
was indicative of a higher overall presence of CD8+ T
cells compared to CD4+ cells, which is associated with
improved patient survival. This finding, together with the
expression of IFNγ, suggests effective immune stimulation
within the tumor and the development of cell-mediated
immunity. In contrast, Giuntoli et al demonstrated that
a high CD4+/CD8+ T-cell ratio is associated with poor
outcome done in patients with ovarian, primary peritoneal
or fallopian tube cancers, and that high concentrations of
interleukins 6 (IL-6) and 10 (IL-10) can help establish an

immunosuppressive climate thatmight lead to a decreased
activation of ascites-derived T cells.50
In Figure 7, we summarize the possible interactions

occurring between the immune cell populations identified
within the ascites and their effect on themetastatic tumors
in situ, based on cell-surface marker expression. The pres-
ence of CD45+B220+ B cells can be linked to both pro-
and antitumor responses due to their phenotypical and
functional variability, as confirmed by several other stud-
ies. Indeed, the B220+CD11b+MHC-II+ B-cell population
(7A) can have a positive or neutral prognostic effect,51,52
which can also be mediated by CD38 expression.53 In con-
trast to this, the presence of CD25+CD19+ B regulatory
cells (7B) is correlated with suppressed T cells responses
and poorer patient survival.54
Two additional markers, PD-1 and PD-L1, present on

both CD4+ (7C) and CD8+ T (7D) cells, have a pivotal role
in establishing efficient immunotherapeutic approaches,
after it was demonstrated that their inhibition can stop
cancer progression.55 Although clinical trials testing PD-1
and PD-L1 inhibitors have not yet yielded satisfactory
results in OC as single treatment,8,9 their use as combina-
torial treatment still holds promise. The prognostic value
of PD1+TILs, when colocalizedwith PD-L1 on cancer cells
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has been demonstrated supporting the PD-1 inhibitory
pathway as one mechanism they use to silence the
immune system during OC progression.56 In particular,
although tumors appear to be infiltrated by T cells at early
stages, a progressive reduction in the frequency of CD8+
T cells and CD8:Treg ratio was noticed at more advanced
advanced stages.57 Our findings have also attributed the
majority of PD-L1 expression to macrophages (7H) and,
together with the presence of cytolytic and regulatory TIL
subsets, link directly to survival potential.58 Macrophages,
identified through the coexpression of F4/80 and CD64,
were also positive for MHC-II, CD44, and CD80, with the
lattermarker suggesting anM1 phenotype, which has been
linked to increased inflammatory status47 and is specif-
ically correlated with a longer overall survival (OS) and
progression-free survival (PFS) in serous OC patients.59
Neutrophils (7F), identified by the presence of the

markers Ly6C and Ly6G (similar to other myeloid
derived populations such as eosinophils (7G) and mono-
cytes/macrophages), were also present.60 Neutrophils
have been connected to antitumor-promoting activity
in OC. Indeed, neutrophils isolated from the ascites
of a KRAS-ID8-induced mouse model showed KRAS-
dependent CD8+ T-cell activation through increased
recruitment of costimulatory molecules. On the con-
trary, neutrophil depletion (through administration of an
anti-Ly6G monoclonal antibody) led to marked tumor
progression.37 More recently, however, Ly6G-positive neu-
trophils have been reported to promote amicroenviroment
that is conducive of metastases spreading and accumula-
tion at specific sites.61
Dendritic cells, identified by the expression of CD11b+,

CD11c+, CD44+, andMHC-II (7E), are paramount players
in the activation of effective T-cell responses through their
antigen-presenting activity. Indeed, CD44 was found to be
pivotal in the formation of tight junctions between mature
DCs and T cells and to play a role in T-cell activation
as a consequence.62 However, DCs can undergo tumor-
mediated immunosupressive processes, such as the block-
age of their activity through the tumor-induced upregula-
tion of the unfolded protein response (UPR), as showed
by Cubillos-Ruiz et al.14 Moreover, Krempski et al also
found that tumor infiltrating, PD-1+/PD-L1+ DCs within
the ascites respond poorly to danger signal, suppress T-cell
activity and decrease T-cell infiltration within the tumor
masses.63
The immune cells identified within the ascites produced

in this model of HGSOC are linked to both pro- and antitu-
moral activity, indicating that this model represents a bal-
anced immune response to the tumor, or that the immuno-
suppressive effect of the tumor is yet to take hold. For
instance,while expression of the integrin, CD103, and tran-
scription factor, Tbet, associated with CD8+ T cells might

indicate a better prognosis,64–66 the high expression of
Ly6C on monocytes is a strong indicator of a TAM pheno-
type with strong immunosuppressive potential and poor a
prognosis.67,68
More generally, the presence of immune-active compo-

nents within the tumor nodules and the ascites raises the
question of why the therapeutic potential of immunother-
apies is still limited in OC settings. In this case, addi-
tional factors should be considered, including the so-called
tumormutation burden (TMB). TMB results from the iden-
tification and quantification of driver genesmutations that
are responsible for the production of neoantigens. The
increasing presence of neoantigens has been associated to
the activation of the antitumor immune response. For this
reason, TBM plays an important role in the progression of
a cancer with a high mutation load being associate to a
better prognosis.69 A recent investigation calculating TMB
in 397 patients with OC in the TCGA database revealed
that resting immune cells (B cells, B cells, CD4+ T cells,
Tregs, monocytes, mast cells, and neutrophils) likely infil-
trate tumors with low TMB, whereas activated immune
cells (CD4+ T cells, follicle-assisted T cells, proinflamma-
tory macrophages) infiltrate tumors with high TMB.70 In
other cases, some cell-based immunotherapies (such as
CAR-T) targeting a single tumor antigen often lose their
efficacy as the result of mutations occurring in tumor
cells, which impair specific antigen expression thus hin-
dering the effect of the therapy.71 In addition, cell therapeu-
tics often are subjected to the immunosuppressive envi-
ronment they meet following administration, which lim-
its their effectiveness in exerting an antitumor immune
response.28,72 The tryptophan catabolism offers another
example relevant in this context, as the tryptophan-
catabolizing enzyme indoleamine 2,3-dioxygenase (IDO)
has been found to be hyperactive in OC and linked to
the production of immunosuppressive catabolites and poor
patient survival.73 In addition, the cancer-induced acidic
environment has been shown to have a role in tumor recur-
rence, metastasis, and prognosis of cancer patients (due
to the high production of lactate).74 Furthermore, lactate
can also support cancer cell immune evasion by inhibit-
ing T-cell activation75 and dendritic cell antigen presenting
capacities.76
This work is the first to provide a multiparametric

and comprehensive characterization of the immune cell
landscape of the ascites collected from a preclinical model
of advanced OC. Published literature reports fragmented
information, as only single populations (such as CD4+ and
CD8+ T cells) have been so far identified and described.50
A more complete description has been offered by Wertel
et al who listed the percentages of the main cellular
components found in the peritoneal fluid of advanced OC
patients bymerging the information collected from several
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different studies.49 More recently, the panorama of the
ascites collected from HGSOC patients has been resolved
by applying single cell-RNA sequencing (scRNA-seq).77
In this study, the authors provided a broad view of the
different cell types in the ascites ecosystem,with particular
focus on malignant versus nonmalignant cells (analyzing
samples partially depleted of CD45+ immune cells).
The potential strength of the data we identified is there-

fore to demonstrate that mass cytometry provides a plat-
form for the comprehensive analysis of the immune cell
landscape within ascites, which would allow periodical
analysis of cellular and molecular changes in patients
with OC. In this regard, CyTOF holds the promise of
complementing personalized therapeutic approaches, and
potentially enabling real time tracking of the efficacy of
immunotherapeutics. Compared to scRNA-seq, CYTOF
offers the advantage of a higher throughput for the evalua-
tion of the TME in clinical samples, as it allows for a more
accurate targeting of immune cell subsets through the use
of >30 selected antigen markers. Moreover, CyTOF “nar-
row and distinct”78,79 data are generated from the anal-
ysis of over 250 000 cells, whereas transcriptome-based
platforms detect wider unbiased populations from several
thousands of cells.80,81

5 CONCLUSIONS

In this work, we provide, for the first time, a compre-
hensive characterization of the immune landscape of the
ascites collected from tumor-bearing mice, unveiling its
potential for clinical implementation. The continuous
analysis of interactions between immune cells in a cancer-
ous environment would significantly increase the number
of therapeutic options for the treatment of this malignancy
and offer a significant alternative for the evaluation of
ongoing therapies. Data presented in this study provemass
cytometry as a promising tool to facilitate this process,
with the potential to identify personalized therapeutic
targets and establish improved immunotherapy strategies.
In addition, the application of CyTOF on more complex
and genetically modified mice models, as well as on
patients’ derived samples, will also unveil new insights
into disease heterogeneity, pathology, and drug resistance,
and will expand our understanding of HGSOC.

ACKNOWLEDGMENT
We thank the Houston Methodist Research Institute
(HMRI) Immunomonitoring Core. BC acknowledges sup-
port through the Sêr Cymru II scheme, funded by the
European Union’s Horizon 2020 Research and Innovation
Program under the Marie Skłodowska-Curie grant agree-
ment No. 663830, the Welsh European Funding Office

(WEFO) under the European Regional Development Fund
(ERDF) and Houston Methodist Research Institute. SP
is sponsored by the Swansea University Medical School
(UK)/Houston Methodist Research Institute (US) joint
PhD Initiative. Additional support for the study was pro-
vided by the Golfers Against Cancer Foundation.

COMPET ING INTEREST
The authors declare that they have no competing interests.

ETH ICS APPROVAL AND CONSENT TO
PART IC IPATE
All animal studies were carried out in accordance with
guidelines determined by the Animal Welfare Act and the
Guide for the Care and Use of Laboratory Animals and
compliedwith protocols approved by the Institutional Ani-
mal Care and Use Committee at the Houston Methodist
Research Institute (AUP-0219-0013).

AUTH ORS ’ CONTRIBUT IONS
Conceptualization andmethodology: SP, BC; Formal anal-
ysis and data curation: SP, SL, FI, LM, OSV, GDH, RSC and
BC; Validation and investigation: SP, SL, LM and BC; Orig-
inal draft preparation and Writing: SP, LM, GDH and BC;
Review and editing: SP, GDH, DG, RSC and BC; Approval
of finalmanuscript: all authors read and approved the final
manuscript.

AVAILAB IL ITY OF DATA AND
MATERIAL
All data relevant to the study are included in the article or
uploaded as supplementary information.

ORCID
SimonePisano https://orcid.org/0000-0002-5412-1241
Yajaira S. Jimenez https://orcid.org/0000-0003-4647-
4546

REFERENCES
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Can-

cer J Clin. https://doi.org/10.3322/caac.21590. Published Online
First: 2020.

2. Wu J, Sun H, Yang L, et al. Improved survival in ovarian cancer,
with widening survival gaps of races and socioeconomic status:
a period analysis. J Cancer. 2018;9:3548-3556. https://doi.org/10.
7150/jca.26300.

3. Torre LA, Trabert B, DeSantis CE, et al. Ovarian cancer statis-
tics, 2018. CA Cancer J Clin. https://doi.org/10.3322/caac.21456.
Published Online First: 2018.

4. Lisio MA, Fu L, Goyeneche A, et al. High-grade serous ovarian
cancer: basic sciences, clinical and therapeutic standpoints. Int
J Mol Sci. 2019;20(4):952. https://doi.org/10.3390/ijms20040952.

5. Armstrong DK, Alvarez RD, Bakkum-Gamez JN, et al. NCCN
Guidelines Insights: Ovarian Cancer, Version 1.2019. J Natl

	 20	

https://orcid.org/0000-0002-5412-1241
https://orcid.org/0000-0003-4647-4546
https://orcid.org/0000-0003-4647-4546
https://doi.org/10.3322/caac.21590
https://doi.org/10
https://doi.org/10.3322/caac.21456
https://doi.org/10.3390/ijms20040952


PISANO et al.

ComprCancerNetw. 2019;17(8):896-909. https://doi.org/10.6004/
jnccn.2019.0039.

6. Garcia A, Singh H. Bevacizumab and ovarian cancer. Ther
Adv Med Oncol. 2013;5(2):133-141. https://doi.org/10.1177/
1758834012467661.

7. Vasey PA. Resistance to chemotherapy in advanced ovar-
ian cancer: mechanisms and current strategies. Br J Can-
cer. 2003;89:S23–S28. https://doi.org/10.1038/sj.bjc.6601497. Pub-
lished Online First: 2003.

8. Matulonis UA, Shapira-Frommer R, Santin AD, et al. Antitumor
activity and safety of pembrolizumab in patients with advanced
recurrent ovarian cancer: results from the phase II KEYNOTE-
100 study. Ann Oncol. https://doi.org/10.1093/annonc/mdz135.
Published Online First: 2019.

9. Bartl T, Paspalj V, Polterauer S, et al. Current state and perspec-
tives of checkpoint inhibitors in ovarian cancer treatment.Memo
- Mag Eur Med Oncol. 2020;13:202-206. https://doi.org/10.1007/
s12254-020-00579-z.

10. Galon J, Bruni D. Approaches to treat immune hot, altered
and cold tumours with combination immunotherapies. Nat
Rev Drug Discov. 2019;18:197-218. https://doi.org/10.1038/
s41573-018-0007-y.

11. Ghisoni E, Imbimbo M, Zimmermann S, et al. Ovarian can-
cer immunotherapy: turning up the heat. Int J Mol Sci.
2019;20(12):2927. https://doi.org/10.3390/ijms20122927.

12. Lanitis E, Dangaj D, Irving M, et al. Mechanisms regulating
T-cell infiltration and activity in solid tumors. Ann Oncol.
2017;28(suppl_12):xii18-xii32. https://doi.org/10.1093/annonc/
mdx238.

13. ScarlettUK,RutkowskiMR,RauwerdinkAM, et al. Ovarian can-
cer progression is controlled by phenotypic changes in dendritic
cells. J ExpMed. https://doi.org/10.1084/jem.20111413. Published
Online First: 2012.

14. Cubillos-Ruiz JR, Silberman PC, Rutkowski MR, et al. ER stress
sensor XBP1 controls anti-tumor immunity by disrupting den-
dritic cell homeostasis. Cell. 2015;161(7):1527–1538. https://doi.
org/10.1016/j.cell.2015.05.025. Published Online First: 2015.

15. Roane BM, Arend RC, Birrer MJ. Review: targeting the trans-
forming growth factor-beta pathway in ovarian cancer. Cancers
(Basel). 2019;11(5):668. https://doi.org/10.3390/cancers11050668.

16. Kao JY, Gong Y, Chen C-M, et al. Tumor-derived TGF-β reduces
the efficacy of dendritic cell/tumor fusion vaccine. J Immunol.
https://doi.org/10.4049/jimmunol.170.7.3806. Published Online
First: 2003.

17. Ahmed N, Stenvers KL. Getting to know ovarian cancer ascites:
opportunities for targeted therapy-based translational research.
Front Oncol. 2013;3:256. https://doi.org/10.3389/fonc.2013.00256.

18. Kipps E, Tan DSP, Kaye SB. Meeting the challenge of ascites
in ovarian cancer: new avenues for therapy and research.
Nat Rev Cancer. 2013;13(4):273-282. https://doi.org/10.1038/
nrc3432.

19. CohenM, Petignat P. The bright side of ascites in ovarian cancer.
Cell Cycle. 2014;13(15):2319. https://doi.org/10.4161/cc.29951.

20. Tan DSP, Agarwal R, Kaye SB. Mechanisms of transcoelomic
metastasis in ovarian cancer. Lancet Oncol. 2006;7(11):925-934.
https://doi.org/10.1016/S1470-2045(06)70939-1.

21. Mocellin S, Wang E, Marincola FM. Cytokines and
immune response in the tumor microenvironment. J

Immunother. 2001;24:392-407. https://doi.org/10.1097/
00002371-200109000-00002.

22. Moser M. Dendritic cells in immunity and tolerance—do they
display opposite functions? Immunity. 2003;19:5-8. https://doi.
org/10.1016/S1074-7613(03)00182-1.

23. Nelson BH. The impact of T-cell immunity on ovarian can-
cer outcomes. Immunol Rev. 2008;222:101-116. https://doi.org/10.
1111/j.1600-065X.2008.00614.x.

24. Toker A, Nguyen LT, Stone SC, et al. Regulatory T cells in ovar-
ian cancer are characterized by a highly activated phenotype dis-
tinct from that in melanoma. Clin Cancer Res. 2018;24(22):5685–
5696. https://doi.org/10.1158/1078-0432.CCR-18-0554. Published
Online First: 2018.

25. Toyoshimaa M, Tanaka Y, Matumoto M, et al. Generation of a
syngeneic mouse model to study the intraperitoneal dissemina-
tion of ovarian cancer with in vivo luciferase imaging. Lumines-
cence. https://doi.org/10.1002/bio.1112. Published Online First:
2009.

26. Fienberg HG, Simonds EF, Fantl WJ, et al. A platinum-
based covalent viability reagent for single-cell mass cytometry.
Cytom Part A. 2012;81 A:467-475. https://doi.org/10.1002/cyto.a.
22067.

27. Pokhriyal R, Hariprasad R, Kumar L, et al. Chemotherapy
resistance in advanced ovarian cancer patients. Biomark
Cancer. 2019;11:1179299X19860815. https://doi.org/10.1177/
1179299X19860815.

28. Nizzero S, Shen H, Ferrari M, et al. Immunotherapeutic trans-
port oncophysics: space, time, and immune activation in cancer.
Trends Cancer. 2020;6(1):40-48. https://doi.org/10.1016/j.trecan.
2019.11.008.

29. Roby KF, Taylor CC, Sweetwood JP, et al. Development of
a syngeneic mouse model for events related to ovarian can-
cer. Carcinogenesis. 2000;21(4):585-591. https://doi.org/10.1093/
carcin/21.4.585.

30. Maniati E, Berlato C, Gopinathan G, et al. Mouse Ovarian Can-
cer Models Recapitulate the Human Tumor Microenvironment
and Patient Response to Treatment.Cell Rep. 2020;30:525-540.e7.
https://doi.org/10.1016/j.celrep.2019.12.034.

31. Soriano AA, De Cristofaro T, Palma Di, et al. PAX8 expression
in high-grade serous ovarian cancer positively regulates attach-
ment to ECM via Integrin β3. Cancer Cell Int. 2019;19(303):1-12.
https://doi.org/10.1186/s12935-019-1022-8.

32. Wilson AJ, BarhamW, Saskowski J, et al. Tracking NF-κB activ-
ity in tumor cells during ovarian cancer progression in a syn-
geneicmousemodel. J Ovarian Res. 2013;6(1):63. https://doi.org/
10.1186/1757-2215-6-63.

33. Zhang L, Yang N, Conejo Garcia JR, et al. Generation of a syn-
geneic mouse model to study the effects of vascular endothelial
growth factor in ovarian carcinoma. Am J Pathol. 2002;161:2295-
2309. https://doi.org/10.1016/S0002-9440(10)64505-1.

34. Baert T, Verschuere T, Van Hoylandt A, et al. The dark side of
ID8-Luc2: pitfalls for luciferase tagged murine models for ovar-
ian cancer. J Immunother Cancer. 2015;3:57. https://doi.org/10.
1186/s40425-015-0102-0.

35. Gil M, Komorowski MP, Seshadri M, et al. CXCL12/CXCR4
blockade by oncolytic virotherapy inhibits ovarian cancer
growth by decreasing immunosuppression and targeting cancer-
initiating cells. J Immunol. 2014;193:5327-5337. https://doi.org/
10.4049/jimmunol.1400201.

		  21

https://doi.org/10.6004/
https://doi.org/10.1177/
https://doi.org/10.1038/sj.bjc.6601497
https://doi.org/10.1093/annonc/mdz135
https://doi.org/10.1007/
https://doi.org/10.1038/
https://doi.org/10.3390/ijms20122927
https://doi.org/10.1093/annonc/
https://doi.org/10.1084/jem.20111413
https://doi
https://doi.org/10.3390/cancers11050668
https://doi.org/10.4049/jimmunol.170.7.3806
https://doi.org/10.3389/fonc.2013.00256
https://doi.org/10.1038/
https://doi.org/10.4161/cc.29951
https://doi.org/10.1016/S1470-2045
https://doi.org/10.1097/
https://doi
https://doi.org/10
https://doi.org/10.1158/1078-0432.CCR-18-0554
https://doi.org/10.1002/bio.1112
https://doi.org/10.1002/cyto.a
https://doi.org/10.1177/
https://doi.org/10.1016/j.trecan
https://doi.org/10.1093/
https://doi.org/10.1016/j.celrep.2019.12.034
https://doi.org/10.1186/s12935-019-1022-8
https://doi.org/
https://doi.org/10.1016/S0002-9440
https://doi.org/10
https://doi.org/


PISANO et al.

36. Cho S, Sun Y, Soisson AP, et al. Characterization and evaluation
of pre-clinical suitability of a syngeneic orthotopic mouse ovar-
ian cancer model. Anticancer Res. 2013;33(4):1317-1324.

37. Yoshida M, Taguchi A, Kawana K, et al. Intraperitoneal
neutrophils activated by KRAS-induced ovarian cancer exert
antitumor effects by modulating adaptive immunity. Int J Oncol.
2018;53:1580-1590. https://doi.org/10.3892/ijo.2018.4504.

38. Zhu X, Xu J, Cai H, et al. Carboplatin and programmed death-
ligand 1 blockade synergistically produce a similar antitumor
effect to carboplatin alone inmurine ID8 ovarian cancermodel. J
Obstet Gynaecol Res. 2018;44:303-311. https://doi.org/10.1111/jog.
13521.

39. Liao JB, Ovenell KJ, Curtis EEM, et al. Preservation of tumor-
host immune interactions with luciferase-tagged imaging in
a murine model of ovarian cancer. J Immunother Cancer.
2015;25(3):16. https://doi.org/10.1186/s40425-015-0060-6.

40. Cai DL, Jin LP. Immune cell population in ovarian tumor
microenvironment. J Cancer. 2017;8(15):2915-2923. https://doi.
org/10.7150/jca.20314.

41. Tomšová M, Melichar B, Sedláková I, et al. Prognostic signifi-
cance of CD3+ tumor-infiltrating lymphocytes in ovarian carci-
noma. Gynecol Oncol. 2008;108:415-420. https://doi.org/10.1016/
j.ygyno.2007.10.016.

42. Stumpf M, Hasenburg A, Riener MO, et al. Intraepithelial CD8-
positive T lymphocytes predict survival for patients with serous
stage III ovarian carcinomas: relevance of clonal selection of T
lymphocytes. Br J Cancer. 2009;101:1513-1521. https://doi.org/10.
1038/sj.bjc.6605274.

43. Raspollini MR, Castiglione F, Degl’Innocenti DR, et al. Tumour-
infiltrating gamma/delta T-lymphocytes are correlated with
a brief disease-free interval in advanced ovarian serous car-
cinoma. Ann Oncol. 2005;16:590-596. https://doi.org/10.1093/
annonc/mdi112.

44. Leffers N, Gooden MJM, De Jong RA, et al. Prognostic sig-
nificance of tumor-infiltrating T-lymphocytes in primary and
metastatic lesions of advanced stage ovarian cancer. Cancer
Immunol Immunother. 2009;58(3):449-459. https://doi.org/10.
1007/s00262-008-0583-5.

45. Zhang L, Conejo-Garcia JR, Katsaros D, et al. Intratumoral
T cells, recurrence, and survival in epithelial ovarian can-
cer. N Engl J Med. 2003;348:203-213. https://doi.org/10.1056/
NEJMoa020177.

46. Drakes ML, Stiff PJ. Regulation of ovarian cancer prognosis by
immune cells in the tumor microenvironment. Cancers (Basel).
2018;10(9):302. https://doi.org/10.3390/cancers10090302.

47. Allavena P, Sica A, Garlanda C, et al. The Yin-Yang of tumor-
associated macrophages in neoplastic progression and immune
surveillance. Immunol Rev. 2008;222:155-161. https://doi.org/10.
1111/j.1600-065X.2008.00607.x.

48. Zhang M, He Y, Sun X, et al. A high M1/M2 ratio of tumor-
associated macrophages is associated with extended survival in
ovarian cancer patients. J Ovarian Res. 2014;7:19. https://doi.org/
10.1186/1757-2215-7-19.

49. Wertel I, Nowicka A, Rogala E, et al. Peritoneal immune sys-
tem in patients with advance epithelial ovarian cancer. Int Rev
Immunol. 2011;30:87-101. https://doi.org/10.3109/08830185.2011.
569902.

50. Giuntoli RL, Webb TJ, Zoso A, et al. Ovarian cancer-associated
ascites demonstrates altered immune environment: implications

for antitumor immunity.Anticancer Res. 2009;29:2875-2884. http:
//www.ncbi.nlm.nih.gov/pubmed/19661290.

51. Wouters MCA, Nelson BH. Prognostic significance of tumor-
infiltrating B cells and plasma cells in human cancer. Clin
Cancer Res. 2018;24:6125-6135. https://doi.org/10.1158/1078-0432.
CCR-18-1481.

52. Gupta P, Chen C, Chaluvally-Raghavan P, et al. B cells as an
immune-regulatory signature in ovarian cancer.Cancers (Basel).
2019;11(7):894. https://doi.org/10.3390/cancers11070894.

53. Zhu Y, Zhang Z, Jiang Z, et al. CD38 predicts favorable progno-
sis by enhancing immune infiltration and antitumor immunity
in the epithelial ovarian cancer microenvironment. Front Genet.
2020;11. https://doi.org/10.3389/fgene.2020.00369.

54. Wei X, Jin Y, Tian Y, et al. Regulatory B cells con-
tribute to the impaired antitumor immunity in ovar-
ian cancer patients. Tumor Biol. 2016;37(5):6581-6588.
https://doi.org/10.1007/s13277-015-4538-0.

55. Gong J, Chehrazi-Raffle A, Reddi S, et al. Development of PD-
1 and PD-L1 inhibitors as a form of cancer immunotherapy: a
comprehensive reviewof registration trials and future considera-
tions. J Immunother Cancer. 2018;6(1):8. https://doi.org/10.1186/
s40425-018-0316-z.

56. Wang Q, Lou W, Di W, et al. Prognostic value of tumor PD-L1
expression combined with CD8+ tumor infiltrating lympho-
cytes in high grade serous ovarian cancer. Int Immunophar-
macol. 2017;52:7-14. https://doi.org/10.1016/j.intimp.2017.08.
017.

57. Duraiswamy J, Freeman GJ, Coukos G. Therapeutic PD-1 path-
way blockade augments with other modalities of immunother-
apy T-cell function to prevent immune decline in ovarian can-
cer. Cancer Res. 2013;73(23):6900–6912. https://doi.org/10.1158/
0008-5472.CAN-13-1550. Published Online First: 2013.

58. Webb JR, Milne K, Kroeger DR, et al. PD-L1 expression is asso-
ciated with tumor-infiltrating T cells and favorable prognosis in
high-grade serous ovarian cancer. Gynecol Oncol. 2016;141:293-
302. https://doi.org/10.1016/j.ygyno.2016.03.008.

59. Macciò A, Gramignano G, Cherchi MC, et al. Role of M1-
polarized tumorassociated macrophages in the prognosis of
advanced ovarian cancer patients. Sci Rep. 2020;10. https://doi.
org/10.1038/s41598-020-63276-1.

60. Rose S, Misharin A, PerlmanH. A novel Ly6C/Ly6G-based strat-
egy to analyze the mouse splenic myeloid compartment. Cytom
Part A. 2012;81 A:343-350. https://doi.org/10.1002/cyto.a.22012.

61. Lee WJ, Ko SY, Mohamed MS, et al. Neutrophils facilitate ovar-
ian cancer premetastatic niche formation in the omentum. J Exp
Med. 2019;216:176-194. https://doi.org/10.1084/jem.20181170.

62. Hegde VL, Singh NP, Nagarkatti PS, et al. CD44 mobilization
in allogeneic dendritic cell-T cell immunological synapse plays
a key role in T cell activation. J Leukoc Biol. https://doi.org/10.
1189/jlb.1107752. Published Online First: 2008.

63. Krempski J, Karyampudi L, Behrens MD, et al. Tumor-
infiltrating programmed death receptor-1 + dendritic cells
mediate immune suppression in ovarian cancer. J Immunol.
2011;186:6905-6913. https://doi.org/10.4049/jimmunol.1100274.

64. Webb JR, Milne K, Watson P, et al. Tumor-infiltrating lympho-
cytes expressing the tissue resident memory marker cd103 are
associated with increased survival in high-grade serous ovarian
cancer. Clin Cancer Res. 2014;20(2):434-444. https://doi.org/10.
1158/1078-0432.CCR-13-1877.

	 22	

https://doi.org/10.3892/ijo.2018.4504
https://doi.org/10.1111/jog
https://doi.org/10.1186/s40425-015-0060-6
https://doi
https://doi.org/10.1016/
https://doi.org/10
https://doi.org/10.1093/
https://doi.org/10
https://doi.org/10.1056/
https://doi.org/10.3390/cancers10090302
https://doi.org/10
https://doi.org/
https://doi.org/10.3109/08830185.2011
http://www.ncbi.nlm.nih.gov/pubmed/19661290
https://doi.org/10.1158/1078-0432
https://doi.org/10.3390/cancers11070894
https://doi.org/10.3389/fgene.2020.00369
https://doi.org/10.1007/s13277-015-4538-0
https://doi.org/10.1186/
https://doi.org/10.1016/j.intimp.2017.08
https://doi.org/10.1158/
https://doi.org/10.1016/j.ygyno.2016.03.008
https://doi
https://doi.org/10.1002/cyto.a.22012
https://doi.org/10.1084/jem.20181170
https://doi.org/10
https://doi.org/10.4049/jimmunol.1100274
https://doi.org/10


PISANO et al.

65. Xu Y, Chen L, Xu B, et al. Higher numbers of T-bet + tumor-
infiltrating lymphocytes associate with better survival in human
epithelial ovarian cancer. Cell Physiol Biochem. 2017;41:475-483.
https://doi.org/10.1159/000456600.

66. Gacerez AT, Sentman CL. T-bet promotes potent antitumor
activity of CD4+CART cells.CancerGene Ther. 2018;25(5-6):117-
128. https://doi.org/10.1038/s41417-018-0012-7.

67. Movahedi K, Laoui D, Gysemans C, et al. Different tumor
microenvironments contain functionally distinct subsets of
macrophages derived from Ly6C(high) monocytes. Cancer
Res. 2010;70(14):5728-5739. https://doi.org/10.1158/0008-5472.
CAN-09-4672.

68. Reinartz S, Schumann T, Finkernagel F, et al. Mixed-
polarization phenotype of ascites-associated macrophages
in human ovarian carcinoma: correlation of CD163 expression,
cytokine levels and early relapse. Int J Cancer. 2014;134:32-42.
https://doi.org/10.1002/ijc.28335.

69. Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clin-
ical response to CTLA-4 blockade in melanoma. N Engl J Med.
2014;371:2189-2199. https://doi.org/10.1056/nejmoa1406498.

70. Bi F, Chen Y, Yang Q. Significance of tumor mutation burden
combined with immune infiltrates in the progression and prog-
nosis of ovarian cancer. Cancer Cell Int. 2020;20:373. https://doi.
org/10.1186/s12935-020-01472-9.

71. Mehta A, Kim YJ, Robert L, et al. Immunotherapy resis-
tance by inflammation-induced dedifferentiation. Cancer Dis-
cov. 2018;8(8):935-943. https://doi.org/10.1158/2159-8290.CD-17-
1178.

72. Corradetti B, Pisano S, Conlan RS, et al. Nanotechnology and
immunotherapy in ovarian cancer: tracing new landscapes.
J Pharmacol Exp Ther. 2019;370(3):636-646. https://doi.org/10.
1124/jpet.118.254979.

73. Smith LP, Bitler BG, Richer JK, et al. Tryptophan catabolism
in epithelial ovarian carcinoma. Trends Cancer Res. 2019;14:1-9.
http://www.ncbi.nlm.nih.gov/pubmed/31736606.

74. Kato Y, Ozawa S, Miyamoto C, et al. Acidic extracellular
microenvironment and cancer. Cancer Cell Int. 2013;13(89):1-8.
https://doi.org/10.1186/1475-2867-13-89.

75. Fischer K, Hoffmann P, Voelkl S, et al. Inhibitory effect
of tumor cell-derived lactic acid on human T cells. Blood.

2007;109(9):3812-3819. https://doi.org/10.1182/blood-2006-07-
035972.

76. Gottfried E, Kunz-Schughart LA, Ebner S, et al. Tumor-derived
lactic acid modulates dendritic cell activation and antigen
expression. Blood. 2006;107:2013-2021. https://doi.org/10.1182/
blood-2005-05-1795.

77. Izar B, Tirosh I, Stover EH, et al. A single-cell landscape of high-
grade serous ovarian cancer. Nat Med. 2020;26:1271-1279. https:
//doi.org/10.1038/s41591-020-0926-0.

78. Kashima Y, Togashi Y, Fukuoka S, et al. Potentiality of mul-
tiple modalities for single-cell analyses to evaluate the tumor
microenvironment in clinical specimens. Sci Rep. 2021;11:341.
https://doi.org/10.1038/s41598-020-79385-w.

79. Schelker M, Feau S, Du J, et al. Estimation of immune cell con-
tent in tumour tissue using single-cell RNA-seq data. Nat Com-
mun. 2017;8:2032. https://doi.org/10.1038/s41467-017-02289-3.

80. Bacher R, Kendziorski C. Design and computational analy-
sis of single-cell RNA-sequencing experiments. Genome Biol.
2016;17(63). https://doi.org/10.1186/s13059-016-0927-y.

81. Ren X, Kang B, Zhang Z. Understanding tumor ecosystems by
single-cell sequencing: promises and limitations 11 medical and
health sciences 1112 oncology and carcinogenesis 06 biological
sciences 0604 genetics. Genome Biol. 2018;19(211). https://doi.
org/10.1186/s13059-018-1593-z.

SUPPORT ING INFORMATION
Additional supporting information may be found online
in the Supporting Information section at the end of the
article.

		  23

https://doi.org/10.1159/000456600
https://doi.org/10.1038/s41417-018-0012-7
https://doi.org/10.1158/0008-5472
https://doi.org/10.1002/ijc.28335
https://doi.org/10.1056/nejmoa1406498
https://doi
https://doi.org/10.1158/2159-8290.CD-17-1178
https://doi.org/10.1158/2159-8290.CD-17-1178
https://doi.org/10
http://www.ncbi.nlm.nih.gov/pubmed/31736606
https://doi.org/10.1186/1475-2867-13-89
https://doi.org/10.1182/blood-2006-07-035972
https://doi.org/10.1182/blood-2006-07-035972
https://doi.org/10.1182/
https://doi.org/10.1038/s41598-020-79385-w
https://doi.org/10.1038/s41467-017-02289-3
https://doi.org/10.1186/s13059-016-0927-y
https://doi


C
lin

ical

Eur. J. Immunol. 2022. 52: 96–108DOI: 10.1002/eji.202149329

Systems immunology

Research Article

Systematic analysis of CD39, CD103, CD137, and PD-1
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antigen-specific TILs
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The detection of tumor-specific T cells in solid tumors is integral to interrogate endoge-
nous antitumor responses and to advance downstream therapeutic applications. Mul-
tiple biomarkers are reported to identify endogenous tumor-specific tumor-infiltrating
lymphocytes (TILs), namely CD137, PD-1, CD103, and CD39; however, a direct compar-
ison of these molecules has yet to be performed. We evaluated these biomarkers in pri-
mary human ovarian tumor samples using single-cell mass cytometry to compare their
relative phenotypic profiles, and examined their response to autologous tumor cells ex
vivo. PD-1+, CD103+, and CD39+ TILs all contain a CD137+ cell subset, while CD137+ TILs
highly co-express the aforementioned markers. CD137+ TILs exhibit the highest expres-
sion of cytotoxic effector molecules compared to PD-1+, CD103+, or CD39+ TILs. Removal
of CD137+ cells from PD-1+, CD103+, or CD39+ TILs diminish their IFN-γ secretion in
response to autologous tumor cell stimulation, while CD137+ TILs maintain high HLA-
dependent IFN-γ secretion.CD137+ TILs exhibited an exhausted phenotype butwith CD28
co-expression, suggesting possible receptiveness to reinvigoration via immune check-
point blockade. Together, our findings demonstrate that the antitumor abilities of PD-1+,
CD103+, and CD39+ TILs are mainly derived from a subset of CD137-expressing TILs,
implicating CD137 as a more selective biomarker for naturally occurring tumor-specific
TILs.
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Introduction

The intratumoral abundance of tumor-infiltrating lymphocytes
(TILs) is a positive prognostic factor for increased survival in most
solid cancers, indicating that TILs are integral to endogenous anti-
tumor immunity and play a role in controlling cancer progression
[1, 2]. However, only a small percentage of TILs respond against
tumor antigens and their antitumor response can be hindered
by multiple mechanisms of immunosuppression [3, 4]. The chal-
lenges of detecting TILs capable of responding to tumor antigens
have led to great interest in identifying biomarkers of tumor-
specific TILs in solid tumors. Biomarkers that identify tumor-
specific TILs are integral for downstream applications, such as
enriching tumor-specific TILs for use in adoptive cellular therapy,
investigating endogenous antitumor immunity, studying mech-
anisms of effective immunotherapy, identifying antigen-specific
T-cell receptors or neoantigens, and exploring the immunobiology
of these cells [5–8]. The need for effective biomarkers to detect
T cells is further underscored by the fact that many cancers, such
as ovarian cancer, do not have well-defined shared tumor-specific
antigens capable of initiating a tumor-specific T cell response. The
paucity of shared tumor-specific antigens is in contrast to other
cancers, such as melanoma, where some patients mount sponta-
neous responses against the melanocyte differentiation antigen,
MART-1, which can be used to rapidly identify tumor-specific T
cells in melanoma patients using peptide/MHC detection agents
[9]. Furthermore, many cancers including ovarian cancer, have
limited numbers of T cells that naturally respond to tumor-
specific antigens, making their examination challenging. Identi-
fying robust biomarkers for tumor-specific TILs can address this
issue.

Various biomarkers are used to detect endogenous tumor-
specific T cells from solid tumors, such as the co-stimulatory
receptor CD137 (also known as 4-1BB and TNFRSF9), the
negative immunoregulatory receptor PD-1, the lymphocyte-
retention mediating integrin CD103, and the co-expression of
both the ectonucleotidase CD39 and CD103 [10–13]. Iden-
tifying a singular, accurate biomarker for tumor-specific TILs
would streamline downstream research and clinical applications,
but it is unknown which singular biomarker is most effec-
tive at identifying the tumor-specific TIL subset, as a direct
comparison of these reported biomarkers has not been per-
formed. Addressing this knowledge gap is particularly impor-
tant, because TILs frequently co-express these markers and each
biomarker can be differentially expressed across the TIL pop-
ulation, therefore, a biomarker comparison is needed to iden-
tify the marker that most accurately discerns tumor-specific TILs
[14, 15].

Here, we compared the expression of CD137, PD-1, CD103,
and CD39 on TILs in human ovarian cancer, as these are leading
biomarkers used to identify tumor-specific TILs. We hypothesized
that a comparative interrogation of TILs in human tumors would
reveal which biomarker is most discriminating for tumor-specific
TILs with autologous antitumor activity.

Results

A subset of TILs express effector molecules

To investigate the phenotype of TILs harbored within infiltrated
tumors, the algorithms viSNE and PhenoGraph metaclustering
[16, 17] were used to co-map CD3+CD45+ TILs in enzyme-
digested ovarian tumors analyzed by single-cell mass cytome-
try. To address patient-specific variability and to understand TIL
dynamics shared between samples, PhenoGraph clusters were
merged using the metaclustering algorithm in the interactive cyt
tool [16]. Metaclustering analysis identified seven major TIL pop-
ulations (Fig. 1A). Metaclusters (MCs) 1, 5, 6, and 7 were gener-
ally conserved among all samples tested, while MCs 2, 3, and 4
had greater variability (Fig. 1B). MC5 (mean = 1.51, 95% CI =
-0.37 to 3.39) and MC6 (mean = 2.21, 95% CI = -0.83 to 5.24)
were the rarest subsets in all samples, and MC5 was consistently
enriched for cells expressing activation, proliferation, and effec-
tor molecules (Fig. 1B,C). Compared to the other metaclustered
groups, only MC5 highly expressed effector molecules associated
with antitumor responses, including IL-2, IFN-γ, perforin, TNF-α,
and Granzyme B (Fig. 1C).

A series of activation-associated, cell surface markers have
recently been described to identify, characterize and utilize nat-
urally occurring tumor-specific T cells in human tumors. CD137,
PD-1, CD103, and CD39 are most commonly utilized as biomark-
ers of TILs with tumor-specificity [10–13, 18]. MC5, which highly
expresses effector molecules, was enriched for TILs expressing
high levels of CD137 as well as the co-stimulatory receptor
OX40, another TNFR family member upregulated upon T cell
activation. MC5 moderately expressed CD103, PD-1, and CD39,
as well as activation markers CD69 and CD25 (Fig. 1D), indi-
cating that cells in MC5 are enriched for an activated T cell
population.

CD137+ TILs preferentially express effector molecules
and co-express biomarkers of tumor-specificity

To gain a further understanding of which biomarkers are most
selective in identifying TILs expressing effector molecules within
human cancer, we examined viSNE plots of activation and
tumor-specific biomarkers, which revealed the heterogeneity of
their expression patterns. Similar to what was observed in the
metaPhenoGraph heat map results (Fig. 1D), CD137 expression
was primarily detected in the MC5 region, was expressed by both
CD4+ and CD8+ TILs, and had co-expression of OX40, CD103,
CD39, and PD-1 (Fig. 2A). PD-1 and CD69 expression were
common, broadly distributed, with overlapping expression of
CD25, OX40, CD103, CD39, and CD137. CD25 and OX40 expres-
sion were dominated by CD4+ TILs and commonly co-expressed
with CD39, while CD103+ TILs were mainly CD8+, a portion
of which expressed CD39. Overall, few TILs expressed effector
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Figure 1. A small population of patient TILs positive for activation, tumor-specific markers also co-express effector molecules. CyTOF was per-
formed on human ovarian tumor digests and analyzed usingmetaPhenoGraph. Experimentwas repeated twice for a total of 5 samples (A)Metaclus-
tering analysis identified 7 metaPhenoGraph metaclusters for ovarian cancer patient CD3+CD45+ TILs (n = 5). (B) Bar plot represents metacluster
frequency per patient. Error bars represent the 95% confidence interval (n = 5). (C) metaPhenoGraph cluster results are represented as a heatmap,
showing expression of Ki67, CD4, CD8, and effector markers (n = 5). (D) metaPhenoGraph heatmap displaying activation/tumor-specific markers
(n = 5).

molecules, such as IFN-γ, IL-2, and TNF-α, and their MMI was low,
compared to the level of activation and tumor-specific biomark-
ers. However, the few TILs that expressed effector molecules such
as IFN-γ, IL-2, and TNF-α, were positive for CD137 in the MC5
region, suggestive of CD137+ TIL polyfunctionality, and CD137
expression was more focal than other tumor-specific biomarkers
(Fig. 2A). Since viSNE plot analyses indicated that CD137 expres-
sion overlapped more with effector molecule expression than
other biomarkers, we compared effector molecule expression
within the CD137+ TIL population to expression in TILs express-
ing other tumor-specific and activation markers (Supporting
Information Fig. 1). Generally, CD137+ TILs exhibited the greatest
frequency of cells expressing IFN-γ, TNF-α, Granzyme B, perforin,
and IL-2, compared to other biomarkers expressing TILs (Fig. 2B).
CD137+ TILs had greater expression of IFN-γ (P-value = 0.0008),
Granzyme B (P-value = 0.01), perforin (P-value = 0.003), and
IL-2 (P-value = 0.002) than CD103+ TILs, but similar levels of
TNF-α expression (Fig. 2B). CD137+ TILs and OX40+ TILs were
similar with the exception of CD137+ TILs expressing greater fre-
quencies of IFN-γ (P-value = 0.008) and Granzyme B (P-value =
0.01; Fig. 2B). While this study focuses on comparing single
biomarkers, dual expression of CD103+CD39+ was reported
to identify CD8+ tumor-specific TILs [13]. When comparing

CD103+CD39+ TILs to CD137+ TILs, CD137 expression was
more selective for identifying total CD3+ and CD8+ TILs express-
ing effector molecules (Supporting Information Fig. 2A,B) with
no differences observed when comparing CD4+ TILs (data not
shown).

Although CD137+ TILs exhibited the highest expression of
effector molecules, the frequency of these cells was low (mean =
4.1%, 95% CI = 1.87 to 6.36) compared to TILs express-
ing other biomarkers (Fig. 3A). Since viSNE and PhenoGraph
analyses (Fig. 1) revealed that CD137+ TILs often co-express
tumor-specific biomarkers, we next examined the frequency of
CD137+ TILs within TIL populations expressing other tumor-
specific biomarkers using biaxial gating (Fig. 3B). CD137+ TILs
commonly co-expressed PD-1 (mean = 54.9%, 95% CI = 39.47
to 70.31]), CD103 (mean = 37.6%, 95% CI = 24.64 to 48.78),
and CD39 (mean = 76.8%, 95% CI = 64.55 to 88.95). In
contrast, only a small portion of PD-1+ (mean = 6.2%, 95%
CI = 4.36 to 8.07), CD103+ (mean = 6.2%, 95% CI = 3.13
to 9.17), or CD39+ (mean = 6.7%, 95% CI = 3.45 to 10.02)
TILs co-expressed CD137. These results, combined with effec-
tor molecule expression data (Fig. 2), indicate that CD137 is
the more selective marker for identifying tumor-specific TILs
(Fig. 3C).
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Figure 2. TILs positive for CD137 have enhanced expression of effector molecules compared to other markers indicative of tumor-specificity.
CyTOF analysis was performed on human ovarian tumor digests and analyzed via viSNE (A) or traditional biaxial gating (B). (A) viSNE plots of
tumor-specific markers used in the literature (CD137, CD103, PD-1, CD39), activation markers (CD25, CD69), a TNFR family member (OX40), and
effector molecules IFN-γ and TNF-α. CD4 and CD8 TILs are represented as well. Experiment was conducted twice for a total of 5 samples. (B) Plots
comparing frequency of effector molecule expression between activation andmarkers of tumor-specificity (n = 15). Experiment was independently
performed four times, with the exception of CD39 where the experiment was repeated three times. The Student’s two-tailed, paired t-test was run
to determine statistical significance. NS represents a P-value >0.050, (*) represents a P-value ≤ 0.050, (**) represents a P-value <0.01, (***) represents
a P-value < 0.001, (****) represents a P-value < 0.0001, boxplots depict the median, quartiles, with whiskers representing the min and max, error
bars are 95% confidence interval.

CD137+ TILs are a subset of PD-1+, CD103+, and
CD39+ TILs that exhibit antitumor activity

We next investigated whether the CD137+ TIL subset contained
within other biomarker populations are enriched for effector
molecules. Decreased IFN-γ expression was observed in CD39+

(P-value = 0.001), CD103+ (P-value < 0.001), and PD-1+ (P-
value = 0.002) TILs when CD137+ TILs were selectively gated
out (Supporting Information Fig. 2C) prior to analysis in Fig. 4A.
This effect was also observed in TILs expressing CD25 (P-value
= 0.001), CD69 (P-value = 0.001), or OX40 (P-value = 0.003;
Fig. 4A). Granzyme B expression similarly decreased (Fig. 4B),
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Figure 3. CD137+ TILs are rare and highly co-express PD-1, CD103, and CD39. Human ovarian tumor digests were interrogated using CyTOF and
analyzed using traditional biaxial gating. Experiment was conducted a total of four times, with the exception of CD39 which was performed three
times independently. (A) Frequency of activation and tumor-specificmarkers within CD3+CD45+ TILs (n= 15). (B) Co-expression patterns of CD137+,
PD-1+, CD103+, and CD39+ TILs (n = 15 with the exception of CD39+ TIL co-expression for PD-1, n = 10). (C) Schematic of CD137, PD-1, CD103,
and CD39 predicted T cell expression according to phenotypic findings. The Student’s two-tailed, paired t-test was run to determine statistical
significance. NS represents a P-value > 0.050, (*) represents a P-value ≤ 0.050, (**) represents a P-value < 0.01, (***) represents a P-value < 0.001, (****)
represents a P-value < 0.0001, error bars are 95% CI with center values representing the mean.

leading us to hypothesize that the CD137+ TIL subset may
account for the reactivity observed in other biomarker-expressing
tumor-specific TIL populations [10–13].

We next tested whether functional reactivity of TILs was
restricted to the CD137+ TIL subset in co-culture assays where
CD137+ TILs were first sorted out of the bulk TIL, and then
other biomarker expressing TIL subsets were sorted prior to co-
culture with autologous tumor cells ( Supporting Information
Fig. 2D). Compared to the PD-1+, CD103+, and CD39+ TIL
populations depleted of CD137+ cells, the CD137+ TIL sub-
set produced the highest levels of IFN-γ in response to autolo-

gous tumor cells exposure in three independent donor samples.
Production of IFN-γ by CD137+ TILs upon autologous tumor
co-culture was HLA-dependent, indicating tumor-antigen speci-
ficity, as IFN-γ decreased upon HLA blocking of MHC class I
and class II with antibodies (Fig. 4C). In all tested TIL sam-
ples, the CD137+ subset secreted IFNγ levels twice as high as
that of unstimulated TILs alone. These results indicate that effec-
tor molecule expression is enriched within the CD137+ TIL frac-
tion, and that CD137+ TILs account for the majority of antitu-
mor reactivity observed within PD-1+, CD39+, and CD103+ TIL
populations.
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Figure 4. Removal of CD137+ T cells decreases effector molecule production in other biomarker subsets. (A and B) CyTOF analysis was run on
human ovarian tumor digests and analyzed via biaxial gating. (C) TIL subsets were co-cultured with autologous tumor cells and supernatants were
analyzed after 24 h by LEGENDplax. (A) Expression of IFN-γ and (B) Granzyme B within CD137+ and CD137− subpopulation within tumor-specific
and activation markers (n = 15). Experiment was conducted four times, for a total of total of 15 samples, with the exception of the CD39 plot
where the experiment was repeated three times for a total of 15 samples. Representative gating is shown in Supporting Information Figure 2C.
(C) IFN-γ secretion following autologous tumor co-culture in three different ovarian patient samples. Blue dashed and blue number on the y-axis
indicates the lowest sensitivity of the assay according to the standard curve. Assay flow setup is represented in Supporting Information Figure 2D.
Experimented was conducted three times, with one patient ran at a time. The Student’s two-tailed, paired t-test was run to determine statistical
significance. NS represents a P-value > 0.050, (*) represents a P-value ≤ 0.050, (**) represents a P-value < 0.01, (***) represents a P-value < 0.001, (****)
represents a P-value < 0.0001, error bars are 95% confidence interval with center values representing the mean.
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Figure 5. Both CD4+ and CD8+ TILs express markers indicative of anti-
tumor reactivity. Human ovarian tumor digests were interrogated by
CyTOF and analyzed via biaxial gating. Experiment was independently
run four times, with the exception for CD39 which was repeated three
times. (A) Frequency of CD4+ and CD8+ TILs in live CD3+CD45+ TILs
(n= 19). (B) Frequency of tumor-specificmarkers within CD4+ and CD8+

TILs. Sample size per group: CD137 (n = 19), CD39 (n = 14), CD103, PD-
1, CD25, CD69, and OX40 (n = 18). (C) Frequency of effector molecules
within CD4+ and CD8+ TILs. The Student’s two-tailed, paired t-test
was run to determine statistical significance. NS represents a P-value
> 0.050, (*) represents a P-value ≤ 0.050, (**) represents a P-value < 0.01,
(***) represents a P-value < 0.001, (****) represents a P-value < 0.0001,
error bars are 95% confidence interval with center values representing
the mean.

Both CD4+ and CD8+ TILs express markers of
antitumor reactivity

Having analyzed co-expression and effector profiles of
tumor-specific marker expressing populations within overall
CD3+CD45+ TILs, we next examined the biomarker profiles of
CD4+ or CD8+ TIL subsets in ovarian cancer samples. There were
more CD4+ TILs (mean = 49.6%, 95% CI = 43.43 to 55.86) than
CD8+ TILs (P-value = 0.02, mean = 34.9%, 95% CI = 27.88 to
41.85) (Fig. 5A). CD137 expression within the CD4+ (mean =
5.9%, 95% CI = 2.12 to 9.75) and CD8+ (mean = 3.32%, 95% CI
= 5.46 to 1.19) TIL subsets did not statistically differ, suggesting
that both CD4+ and CD8+ T cells harbor tumor-specific TILs and
that both subsets may contribute to antitumor activity in ovarian
cancer. More CD8+ TILs expressed CD103 (P-value < 0.001)
and CD69 (P-value = 0.01). A higher percentage of CD4+ TILs
expressed CD25 (P-value < 0.001) and OX40 (P-value = 0.01),
but there was no significant differences in CD39 or PD-1 expres-
sion (Fig. 5B). When comparing effector molecule expression, an
increased frequency of IFN-γ (P-value = 0.04), TNF-α (P-value
= 0.01), and IL-2 (P-value = 0.01) expressing cells was detected

in CD4+ TILs. CD8+ TILs contained greater frequencies of cells
expressing Granzyme B (P-value = 0.03), and no difference was
detected in perforin expression (Fig. 5C). These results support
the notion that both CD4+ and CD8+ TILs can express effector
molecules, which can be divergent and together may play integral
roles in immune responses against tumor cells.

Tumor-specific TILs display a phenotype indicative of
restorable exhaustion

Since our findings indicate that CD137+ TILs express effec-
tor molecules and other molecules indicative of activation, we
queried whether these tumor-specific TILs displayed features of
exhaustion, which is commonly associated with chronic tumor-
antigen stimulation [19]. We examined to what degree TILs in
meta-cluster 5 (MC5) (Figs. 1 and 2), which harbored the high-
est frequency of CD137+ and effector molecule-expressing TILs,
exhibit phenotypic hallmarks of exhaustion. T cells in the MC5
population expressed multiple markers indicative of exhaustion,
specifically CTLA-4, Tim-3, PD-1, CD39, CD244, EOMES, Lag-3,
TIGIT, and CD160. (Fig. 6A). MC5 TILs expressed PD-1, albeit at
overall lower levels than MC6. MC5 TILs uniquely co-expressed
PD-1 and the costimulatory molecule CD28, whose signaling is
required for rescue of CD8+ T cell activity in anti-PD-1 ther-
apy for cancer [20]. Exhaustion-associated marker expression in
CD137+ TILs was compared to other TIL populations by examin-
ing TIGIT, EOMES, and CD39 expression in CD137+ or CD137−

subsets. CD137+ TILs expressed higher levels of the exhaustion-
associated markers TIGIT (P-value < 0.001), EOMES (P-value
< 0.001), and CD39 (P-value < 0.001), compared to CD137− TILs
(Fig. 6B). Since the aforementioned markers can be upregulated
by both activated and exhausted T cells, we assessed whether
CD137+ TILs are skewed towards a EOMEShiT-betdim phenotype
associated with dampened effector functions [21] or toward a
more functional EOMESdimT-bethi phenotype. CD137+ TILs were
more skewed towards an EOMEShiT-betdim (P-value = 0.004)
phenotype than their CD137− counterparts, supporting the notion
that CD137+ TILs are exhausted (Fig. 6C, D). As CD137+ TILs
appear exhausted but also harbor tumor-specific TILs that express
effector molecules and co-express CD28, our results suggest
that CD137+ TILs have the greatest potential for reinvigoration
[20]; however, studies designed to disentangle functional T cell
exhaustion from activity in CD137-expressing TILs would be nec-
essary to validate this supposition.

Discussion

TILs are a heterogeneous population of immune cells that can
differ in specificity, differentiation, and function. Biomarkers
that identify endogenous tumor-specific TIL subsets are fun-
damental to immunobiology research, studying mechanisms of
endogenous antitumor immunity, isolating tumor-specific T-cell
receptors, and optimizing cellular therapies [5–8]. We observed
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Figure 6. CD137+ TILs within the ovarian cancer tumor microenvironment have a phenotype indicative of exhaustion. CyTOF analysis was per-
formed on human ovarian tumor digests and analyzed via biaxial gating. (A) metaPhenoGraph heatmap (same samples and setup as in Figure 1)
displaying markers mainly of activation, co-stimulation, and exhaustion. Experiment was conducted twice (n = 5). (B) Frequencies of exhaus-
tion markers TIGIT, EOMES, and CD39 in CD137+ versus CD137− TILs (n = 11). Experiment was repeated three times. (C) Representative gating of
EOMEShiT–betlo and EOMEShi T-betlo in CD137+ and CD137− live CD3+CD45+ TILs. (D) EOMEShiT–betlo and EOMEShi T-betlo frequencies in CD137+

and CD137− TILs (n = 7). Experiment was performed independently twice. The Student’s two-tailed, paired t-test was run to determine statistical
significance. NS represents a P-value > 0.050, (*) represents a P-value ≤ 0.050, (**) represents a P-value <0.01, (***) represents a P-value < 0.001, (****)
represents a P-value < 0.0001, error bars are 95% confidence interval with center values representing the mean.

that TILs expressing effector molecules often co-expressed other
biomarkers used to identify tumor-specific TILs. Earlier studies of
TILs expressing a single biomarker reported levels of secondary
biomarker co-expression, but a direct comparison between var-
ious biomarker-expressing TIL subsets had yet to be conducted
[10–13]. We found that a small subset of PD-1+, CD103+, and
CD39+ TILs reproducibly co-express CD137. In contrast, most
CD137+ TILs highly co-express the aforementioned biomark-
ers, and preferentially express effector molecules, indicating that
CD137 more selectively identifies tumor-specific TILs. Further,
removing CD137+ TILs from other biomarker-expressing TIL sub-
sets reduced their functional activity in response to autologous
tumor stimulation, indicating that while PD-1, CD103, and CD39
markers can be used to identify tumor-specific TILs, CD137
expression is a more discriminatory tumor-specific TIL biomarker.

The finding that CD137 expression is a highly selective marker
for endogenous tumor-specific TIL identification is supported by

previous findings from our laboratory [9, 10], and later studies
that used CD137 to enrich tumor-specific TILs [7,10,22]. Our find-
ings contradict results reported by Gros and colleagues showing
that both PD-1+ and CD137+ TIL subsets were tumor-reactive
but with PD-1 better identifying tumor-reactive T cells [11].
Interesting, activation-induced expression of CD137 was used to
define tumor-reactivity in many of the assays used in that study.
The discrepancy between our findings and those reported by Gros
et al. may be explained by differences in the cancer type stud-
ied as well as the methodology applied. Gros et al. solely focused
on CD8+ TILs and did not include CD4+ TILs. In contrast, the
present study, and our previous study that first defined CD137 as a
biomarker for tumor-specific TILs [10] included CD4+ TILs in the
analysis. This alone does not account for the discrepancy, since
CD137 still served as a better biomarker for tumor-specific CD8+

TILs. Identifying endogenous tumor-antigen-specific TIL biomark-
ers in patients has been heavily CD8+ T-cell-centric [11–13, 23],
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but there is growing appreciation for the role of CD4+ T cells in
promoting antitumor immunity and immunotherapy efficacy [24–
27]. This is emphasized by our findings that CD4+ TILs dominate
the ovarian tumor environment and have equivalent expression
of CD137 as CD8+ TILs. Also, with the exception of Granzyme
B, CD4+ TILs had either equivalent or greater positivity for IFN-
γ, TNF-α, perforin, and IL-2. Our results support the idea that
both CD8+ and CD4+ TILs have integral roles in driving antitu-
mor immune responses and may have divergent antigen-specific
responses.

A separate study by Duhen et al. demonstrated that co-
expression of CD39 and CD103 TILs can identify tumor-specific
TILs within solid tumors. Similar to Gros et al., the work
focused on CD8+ TILs [13]. Supporting our finding that CD137+

TILs often co-express other commonly used tumor-specific TIL
biomarkers, both Gros et al. and Duhen et al., used CD137 upreg-
ulation as a measure to assess tumor-cell recognition by PD-1+

or CD39+CD103+ CD8+ TILs in co-culture experiments. Notably,
only a subset of enriched PD-1+ or CD39+CD103+ CD8+ TILs
upregulated CD137 expression after autologous tumor recogni-
tion. Unlike Gros et al. and Duhen et al. studies, we examined
TILs from tumor digests without the addition of cytokines, estab-
lishment of T cell clones, or bulk-expansion. It bears consideration
that this methodology may better preserve TIL natural reactivities
to autologous tumor antigens with minimal manipulation of TIL
biomarker expression.

Immune checkpoint blockade has shown great promise in
numerous solid tumors, and successful antitumor responses are
thought to rely upon reinvigorated responses by tumor- specific
T cells [19, 28, 29]. The phenotypic profile of CD137+ TILs sug-
gests that they have potential for reinvigoration via checkpoint
blockade. CD137+ TILs highly expressed multiple co-inhibitory
receptors, including PD-1, and were skewed towards a pheno-
type characteristic of exhausted T cells [21] and co-expressed
CD28. Expression of CD28 by CD137+ TILs is important because
restoring exhausted T cell function is dependent on CD28 co-
stimulation [20, 30]. However, many cancers, including ovarian
cancer, have low response rates to PD-1/PDL1 blockade [31].
Our data may suggest that one potential explanation is that
most patients have too few CD137+ TILs to reinvigorate for
an effective antitumor response. It is intriguing to hypothesize
that the response rate to PD-1/PDL1 blockade may be increased
by promoting CD28 signaling to TILs, such as through CTLA-4
blockade. Both CTLA-4 and CD28 bind to CD80 and CD86 on
antigen-presenting cells, but CTLA-4 binds CD80 and CD86 with
greater affinity and avidity than CD28, enabling it to outcom-
pete CD28 for these ligands. The response rate to anti-PD-1 anti-
body treatment in ovarian cancer nearly triples when a CTLA-
4 blocking antibody is added to the treatment regimen [32].
Furthermore, agonizing CD137 may aid in promoting antitumor
responses in patients, and although CD137 agonism in the clinic
has had toxicities [33, 34], dual bispecific antibodies that agonize
CD137 are being developed in order to enhance T cell prolifer-
ation and antitumor activity in human cancer without the safety
limitations observed in the clinic [35, 36]. The recently developed

CD137/OX40 bispecific antibody [35] may be promising to test in
an ovarian cancer model, as we observed that effector molecule
expressing CD137+ TILs also co-expressed OX40 (Fig. 2A). Future
studies are needed to determine if CD137+ TILs are reinvigo-
rated by anti-PD-1 therapy, whether they require CD28 signal-
ing, and how they contribute to successful immune checkpoint
blockade monotherapy or combinatorial immunotherapy strate-
gies [35, 36].

Collectively, this work clarifies the differential expression of
biomarkers for tumor-specific TILs and demonstrates that CD137
is a more selective biomarker for identifying naturally occurring,
tumor-specific TILs than PD-1, CD103, or CD39 within human
ovarian tumors. This work corroborates our original finding that
CD137 accurately identifies tumor-specific TILs10. Furthermore,
our findings explain why the addition of an agonistic antibody
to TIL cultures results in preferential expansion of tumor-specific
TILs in melanoma [37]. We acknowledge there are limitations to
this analysis. Our study entirely used ovarian cancer specimens,
and results may differ in other cancer types. Also, due to limited
cell numbers, we were unable to independently test CD4+ and
CD8+ TILs for TIL subset reactivity, or test restorable exhaustion
on PD-1+ T cells. Furthermore, PD-1 blockade has low efficacy in
in vitro assays, and would require sophisticated in vivo models
and large cell numbers. Nevertheless, we conclude that this work
disentangles the differential expression of tumor-specific biomark-
ers by TILs and demonstrates that CD137 is an ideal singular
biomarker for identifying tumor-specific TILs, which provides a
deeper understanding of human TILs that may pave a route
towards improving immunotherapeutic strategies for cancer.

Materials and methods

Tumor Samples

Viably frozen, human high-grade serous ovarian tumor samples
were purchased from the Penn Ovarian Cancer Research Center
(OCRC) Tumor BioTrust Collection. Ethics statement: All donor
samples used in this study were de-identified and approved for
use by the UPenn Institutional Review Board (IRB 702679, UPCC
17909). Sex and weight are not a biological variable as all
tumor samples are from females. As samples are de-identified,
age and weight are not known. Surgically resected tumors were
procured from the operating room in an aseptic manner. Tis-
sue was mechanically processed into fragments and added to
an enzyme digest solution. A 10× stock solution of the enzyme
digest buffer contains 2 mg/mL collagenase (Sigma–Aldrich) and
0.3 kU/mL DNase I Type IV (Sigma–Aldrich); solution was diluted
to a 1× solution with RPMI 1640 at the time of digestion. Tis-
sue was incubated in the enzyme digest buffer overnight at room
temperature on a rotator. Dissociated tumor tissue was subse-
quently filtered through sterile 100μm nylon mesh, centrifuged,
and washed twice with dPBS (Dulbecco’s Phosphate Buffered
Saline). Resultant tumor cell digests were cryopreserved in 10%
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dimethyl sulfoxide (DMSO) (Sigma Aldrich) and human serum
(Valley Biomedical, Inc., Product #HS1017). Samples were frozen
at -80°C and banked at -150°C until further use.

Mass Cytometry staining

CyTOF antibodies were purchased from Fluidigm as pre-
conjugated metal tagged antibodies or were conjugated in-house
using the Maxpar Fluidigm kit and protocol. All antibodies were
titrated to determine optimal concentrations for staining samples.
The panel used to initially investigate tumor-specific markers,
before inclusion of CD39 in the aforementioned panel, had the
following surface markers: CD3, CD45, CD4, CD8, CD244, CD69,
OX40, Lag-3, CD103, Tim-3, TIGIT, PD-1, CD137, CD28, CD127,
CD27, GITR, CD25, HLA-DR, and CD160. Intracellular antibodies
included: CTLA-4, pStat5, IL-17A, IL-2, IFNg, Granzyme B, Ki67,
and Perforin. No additional polyclonal stimulation or protein
transport inhibitors were added to preserve the natural pheno-
type and activation state of the T cells. We subsequently designed
a panel to include CD39 and all other tumor-specific markers of
interest. The following panel included CD39 and was used for
downstream viSNE, metaPhenoGraph, and biaxial analysis. Anti-
human surface markers for the panel were: CD3, CD45, CD4,
CD8, CD103, PD-1, OX40, CD39, CD69, CD25, CD137, CD27,
Tim-3, CD127, CD28, CD244, CD5, Lag-3, TIGIT, HLA-DR, and
CD160. Intracellular markers included: Ki67, IL-17A, IL-2, IFN-γ,
IL-6, Perforin, pStat5, TNF-α, Granzyme B, CTLA-4, and EOMES.
The initial panel to compare CD39 and CD137 positive TILs had
the following surface antibodies interrogated: CD3, CD45, CD4,
CD8, CD137, CD39, CD25, HLA-DR, and CD127. Intracellular
antibodies detected were: IL-2, pStat5, EOMES, T-bet, IL-17A,
IFN-γ, Granzyme B, Ki67, and Perforin. The last panel used in this
study was designed to focus on TIL exhaustion. Surface antibodies
used were: CD3, CD45, CD4, CD8, OX40, CD103, TIGIT, CD137,
CD39, CD25, CD3, HLA-DR, and CD127. Intracellular antibod-
ies were: IL-2, pStat5, EOMES, T-bet, and Ki67. For all panels,
cell identifier stain Iridium191/193, live identifier 127IdU (Flu-
idigm) were used. To discriminate dead cells, cisplatin purchased
from Fluidigm or dead stain maleimido-mono-amine-DOTA (mm-
DOTA) from Macrocyclics was used. Viably frozen ovarian human
tumor digests obtained from the Tumor BioTrust collection, pro-
cessed as described in the Tumor Samples section above, were
thawed in batches and stained for CyTOF following the same
methodology as Bengsch et al. [38]. Data acquisition was per-
formed on a CyTOF Helios (Fluidigm CyTOF Helios Mass Cytome-
ter, RRID:SCR_019916) by the CyTOF Mass Cytometer Core at
UPenn. The core performed bead-based normalization for all
samples.

Fluorescent-activated cell sorting

Tumor samples were thawed and washed twice with staining
buffer (PBS, 5% fetal bovine serum) to remove DMSO. Samples

were subsequently stained with Zombie aqua (BioLegend Cat#
423102) for 10 minutes to discriminate live and dead cells. Sam-
ples were washed twice to remove Zombie aqua, then incubated
at 4°C for 30 min in 50 μl of an antibody cocktail to label human
surface markers. Following surface staining, samples were washed
three times. Samples were sent to the Flow Cytometry Facility at
the Wistar Institute for fluorescent-activated cell sorting (FACS)
on a MoFlo Astrios or to the Flow Cytometry Core at the Chil-
dren’s Hospital of Philadelphia and sorted on an Aria, and adhered
to the guidelines for the use of flow cytometry and cell sorting in
immunological studies [39]. All antibodies were purchased from
BioLegend. For all analyses, singlets were detected using FSC-
H versus FSC-A followed by SSC-H versus SSC-A. Cells negative
for Zombie aqua, were identified as live cells. Anti-human-anti-
CD3-PerCpCy5.5 (BioLegend Cat# 317336, RRID:AB_2561628)
was used to detect T cells and the following anti-human antibod-
ies were used to identify T cell subsets CD137+, PD-1+CD137-,
CD39+CD137-, CD103+CD137-: anti-CD137-PeCY7 (BioLegend
Cat# 309818, RRID:AB_2207741), anti-CD103-BV605 (BioLe-
gend Cat# 350218, RRID:AB_2564283), anti-CD39-APC (BioLe-
gend Cat# 328210, RRID:AB_1953234), and anti-PD-1-APCCy7
(BioLegend Cat# 329922, RRID:AB_10933429).

Mass cytometry biaxial analyses

Traditional biaxial analysis, on bead-normalized fcs files, was per-
formed using Flowjo V10 software (FlowJo, RRID:SCR_008520).
Intact single cells were identified using event-length and Iridium.
Cells were live-gated according to 127IdU and mm-DOTA, where
dead cells are positive for mm-DOTA. CD3 and CD45 positivity
identified T-cells. Sequential gating analysis was performed for
all analyzed markers. The resulting values were used to determine
population frequencies.

viSNE and metaPhenoGraph analyses

High-dimensional analysis was conducted using the algorithm
viSNE, which uses the Barnes-Hut t-SNE (bh-SNE) implementa-
tion, from cyt a visualization tool written in Matlab (R2016b,
MATLAB,RRID:SCR_001622) downloaded in 2015 and avail-
able at https://www.c2b2.columbia.edu/danapeerlab/html/cyt-
download.html. Live, single, CD3+CD45+CD137+/- exported fcs
data from five donor samples were imported into cyt, arcsinh5-
transformed, and run as described by Amir et al., 2013 [16] to
create viSNE plots. The following parameters were used for bh-
SNE mapping analysis: Ki67, IL-17A, IL-2, IFN-γ, CD103, PD-
1, IL-6, OX40, CD39, Perforin, CD69, CD4, CD8, pStat5, TNF-α,
GITR, CD25, Granzyme B, and CD137. The PhenoGraph algo-
rithm was run, as described by Levin et al. [17], with the near-
est neighbor input of k = 30 and a Euclidean distance metric.
Markers used for PhenoGraph clustering were the following: Ki67,
IL-17A, IL-2, IFN-γ, CD103, PD-1, IL-6, OX40, CD39, Perforin,
CD69, CD4, CD8, pStat5, TNF-α, GITR, CD25, Granzyme B, and
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CD137. PhenoGraph was metaclustered, as described by Levine
et al., using a k = 15 and a Euclidean distance metric. viSNE,
PhenoGraph, metaPhenoGraph plots, and heatmaps were created
by cyt.

Co-culture experiment

The following live T cell subsets were FACS sorted from thawed
cryopreserved patient tumor samples: CD137+, CD39+CD137−,
CD103+CD137−, and PD-1+CD137- using the staining proto-
col specified in the FACs sorting section. T cells were rested
overnight in RPMI 1640 media supplemented with 10% FBS
and supernatants were collected the following day. CD45+ cells
were depleted from the same patient sample to obtain CD45−

cells for co-culture using the EasySep Human CD45 Depletion
Kit from StemCell Technologies Cat# 17898. T cell subsets
were co-cultured, with 10ug/ml HLA-blocking Class I (BioLegend
Cat# 311402, RRID:AB_314871) & II (BioLegend Cat# 361702,
RRID:AB_2563139) or isotype (BioLegend Cat# 400202) anti-
bodies, at a 1:2 ratio of T cells to autologous tumor cells in
100ul of media in a 96-ubottom plate. The number of T cells
added to co-culture were as follows; 30,000 cells for sample 1743;
14,500 cells for 2304 and 6125 cells for 2399. Following 24 h co-
culture, samples were spun down at 1300 rpm, and supernatants
were collected and stored at -80°C until use. To analyze cytokines
within the supernatants, the manufacture’s protocol of the LEG-
ENDplex Human CD8/NK Panel kit (BioLegend Cat# 740267)
was followed, and two technical replicates were analyzed per
sample.

Statistical analysis

The Student’s two-tailed, paired t-test was run to determine statis-
tical significance. NS represents a P-value > 0.050, “*” represents
a P-value ≤ 0.050, “**” represents a P-value < 0.01, “***” rep-
resents a P-value < 0.001, “****” represents a P-value < 0.0001,
error bars represent 95% confidence Interval.
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Abstract

Objectives. New targets or strategies are needed to increase the
success of immune checkpoint-based immunotherapy for multiple
myeloma (MM). However, immune checkpoint signals in MM
microenvironment have not been fully elucidated. Here, we aimed
to have a broad overview of the different immune subsets and
their immune checkpoint status, within the MM
microenvironment, and to provide novel immunotherapeutic
targets to treat MM patients. Methods. We performed immune
checkpoint profiling of bone marrow (BM) samples from MM
patients and healthy controls using mass cytometry. With high-
dimensional single-cell analysis of 30 immune proteins containing
10 pairs of immune checkpoint axes in 0.55 million of BM cells, an
immune landscape of MM was mapped. Results. We identified an
abnormality of immune cell composition by demonstrating a
significant increase in activated CD4 T, CD8 T, CD8+ natural killer
T-like and NK cells in MM BM. Our data suggest a correlation
between MM cells and immune checkpoint phenotypes and
expand the view of MM immune signatures. Specifically, several
critical immune checkpoints, such as programmed cell death 1 (PD-
1)/PD ligand 2, galectin-9/T-cell immunoglobulin mucin-3, and
inducible T-cell costimulator (ICOS)/ICOS ligand, on both MM and
immune effector cells and a number of activated PD-1+ CD8 T cells
lacking CD28 were distinguished in MM patients. Conclusion. A
clear interaction between MM cells and the surrounding immune
cells was established, leading to immune checkpoint dysregulation.
The analysis of the immune landscape enhances our
understanding of the MM immunological milieu and proposes
novel targets for improving immune checkpoint blockade-based
MM immunotherapy.
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INTRODUCTION

Multiple myeloma (MM) is a cancer of clonal
plasma cells preferentially localised in the bone
marrow (BM). The proliferation of MM cells,
together with an MM cell-changed BM
microenvironment, suppresses local and systemic
immunity, eventually leading to an escape from
immune surveillance.1 Mechanisms involved in
MM-induced immunosuppression include
dysfunction of T and natural killer (NK) cells,2

disruption of antigen presentation processes,3

activation of immunosuppressive cells,3,4

upregulation of inhibitory immune checkpoints5,6

and release of immunosuppressive mediators.7

Comprehensively uncovering the immune status in
the BM microenvironment of MM patients will
largely facilitate the understanding of the
ongoing process of immunosuppression in MM
progression and therefore promote the
development of novel immunotherapeutic
strategies.
Immunotherapy that involves stimulating and

provoking a patients’ own immune system against
cancer has proven to be very encouraging as
dramatic and durable anticancer responses are
well documented in many cancer types.8,9

Blocking inhibitory immune checkpoints on
immune effector cells results in the reactivation of
anticancer immunity.10 Immune checkpoints
contain a series of costimulatory and coinhibitory
receptors or ligands expressed on T, NK or
antigen-presenting cells and mainly function as
switches of immune activation or suppression.11

Under normal physiological conditions, immune
checkpoints maintain self-tolerance and immune
homeostasis, whereas malignant cells take
advantage of these molecules to achieve immune
evasion.12 The most prominent immune
checkpoint blocking strategies, such as targeting
cytotoxic T lymphocyte-associated protein 4
(CTLA-4) and blocking the interaction between
programmed cell death 1 (PD-1) and PD ligand 1
(PD-L1), are able to enlist and strengthen the
immune system to attack cancer cells and have
achieved clinical success in several cancer types,
even in metastatic and chemoresistant cancer.13,14

However, these immunotherapies are unable to
control malignancy in a significant proportion of

patients, largely because of the fact that
inhibitory signals inducing the exhaustion and
dysfunction of anticancer immune cells are not
fully and sustainably blocked.10,15 Indeed, as
reported by a phase 1b clinical study, PD-1/PD-L1
axis-based immune checkpoint blockade failed to
control MM progression,16,17 suggesting that this
checkpoint may not be the major mediator of
failing anti-MM immunity. Besides PD-1 and CTLA-
4, many other immune checkpoints have been
discovered and are used for improved immune
checkpoint-based immunotherapy.18 However,
immune checkpoint signals in the MM
microenvironment have not been fully elucidated.
The analysis of immune checkpoints will help us
to better understand the mechanism of immune
evasion of MM cells and would allow the
development of potent strategies, focused on the
checkpoint signals that are actually used by MM
cells to evade the immune system.
The most commonly used technique for immune

phenotyping, flow cytometry, suffers from the
limited detection channels (generally < 15) and
cumbersome compensation because of spectral
overlap, making it difficult to simultaneously
detect all immune checkpoint phenotypes. As a
cutting-edge single-cell technology, current mass
cytometry merging mass spectrometry with flow
cytometry permits up to 50 metal isotope tags to
be measured simultaneously on a single cell with
minimal/no compensation.19,20 Such high
multiparametric detection provides an
unprecedented opportunity for deep phenotyping
of the tumor immune microenvironment at the
single-cell level. For now, this powerful innovation
has offered insights into the heterogeneity and
complexity of biology and has been used to
understand the complex processes in cellular
development,21 differentiation22 and tumor
immunology,23-25 and to explore the potential
immunotherapeutic targets.23

In this study, 0.55 million BM cells from 10 MM
patients and five healthy donors (HD) were
analysed using mass cytometry to elucidate the
phenotypic diversity and immune checkpoint
signature in MM BM ecosystems. Our data reveal
vast phenotypic heterogeneity among both
malignant and immune cells, identify an
abnormality of immune cell composition and
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suggest links between MM cells and immune
checkpoint phenotypes. Through in-depth
analyses of 10 pairs of immune checkpoint axes in
12 identified immune cell types at the single-cell
level, a picture of the immune checkpoint
interaction network that exists in the MM BM
microenvironment of these patients was
established. Several critical immune checkpoints
were identified in the MM BM and may serve as
novel targets for developing more potent and
efficacious checkpoint blockade-based MM
immunotherapeutic strategies.

RESULTS

In-depth immune checkpoint phenotyping
of MM cells using mass cytometry

To map the immune checkpoint signatures in the
BM microenvironment of MM patients, we
implemented a clinical high-dimensional single-
cell profiling study of freshly collected BM from
newly diagnosed and untreated MM patients
using mass cytometry. Ten MM BM samples and
five healthy BM samples were included for a
large-scale mass cytometry analysis (Figure 1a). We
stained prebarcoded BM cells with 30 antibodies
to simultaneously determine the expression of 30
markers used to define cell populations and
immune checkpoint phenotypes at the single-cell
level (Figure 1b). As the loss of CD138 caused by
the cold storage and processing frequently
occurs,26,27 cells with a CD38++CD45�/dim

phenotype were defined as malignant MM cells
(Figure 1c). To comprehensively view the immune
checkpoint profile of MM cells from all patients,
we generated a single-cell viSNE map to visualise
high-dimensional data in two dimensions.28 This
analysis demonstrated a clear heterogeneity of
MM cells among patients (Figure 1c). On the
viSNE map, clear expression of multiple
immunoregulatory proteins, including CTLA-4,
CD56, inducible T-cell costimulator (ICOS),
galectin-9 (GAL9), CD86, ICOS ligand (ICOSL),
OX40 and HLA-DR, was observed in different MM
cell clusters (Figure 1d). Large proportion of
CD56+ MM cells were detected in 8 of 10 patients,
and GAL9 and ICOSL expressions were widely
found in MM cells from all patients (Figure 1e),
whereas high PD-L1 or PD-L2 expressions were
only observed in few MM cells (Supplementary
figure 1a). These 10 BM samples with 7–41% MM
cells displayed diverse phenotypes in the

expression of immune checkpoint proteins.
Important immune checkpoint ligands, including
GAL9, ICOSL, HLA-DR, CD86, PD-L2, and 4-1BBL,
were expressed by more than 10% of MM cells in
average (Figure 1f and Supplementary figure 1b).
We next performed correlation analyses to
systematically quantify the underlying
relationships between overall MM burden and
MM cells with different immune checkpoint
phenotypes. Multiple robust either positive or
negative relationships were identified (Figure 1g).
Among the positive relationships, GAL9 expression
was most strongly related to MM burden. Also,
the expression of different immune checkpoint
ligands correlated significantly with each other,
such as PD-L2 expression, which correlated with 4-
1BBL and CD56 expressions with ICOSL
(Supplementary figure 1c).

Immune cell signature in MM BM
microenvironment

Next, we used viSNE to visualise the distribution
of the immune cells in the HD and MM BM
samples (equal cell number from each individual)
and demonstrated a large heterogeneity among
MM patients and healthy controls (Figure 2a).
According to the standardised immuno-
phenotyping for human immunology29 and the
expression of 15 surface markers in HD and MM
BM CD45+ cells displayed on the viSNE map
(Figure 2b), 12 major immune cell populations
were gated on the map (Figure 2c). Natural killer
T (NKT) cells are identified with a CD3+CD56+

phenotype in many studies.30-32 However, only a
small proportion of CD3+CD56+ are CD1d-
restricted, which is a unique feature of invariant
NKT (iNKT) cells. Thus, this population is
frequently referred to as ‘NKT-like’.32 Here, we
gated two CD3+CD56+ cell subsets, namely NKT-
like and CD8+ NKT-like cells, after excluding CD4,
CD8 and double-negative (DN) T cells from all
CD3+ cells. As shown by heatmap, the expression
of surface markers in each population was
identical to the phenotype of indicated immune
lineages (Figure 2d). After gating on viSNE map,
the immune lineages in individual samples were
analysed (Figure 2e), which revealed a
heterogeneity across HD or MM patients.
Although wide variation existed in the
frequencies of each immune cell type in different
individuals, several significant changes between
HD and MM patients were detected. In the BM of
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MM patients, the proportion of CD4 T, CD8 T,
CD16+ NK and CD8+ NKT-like cells in CD45+

immune cells was significantly increased along
with the significant decrease in granulocytes, as
compared to those in HD BM cells (Figure 2f). The
average percentage of CD8 T cells increased from
7.77% in HD to 14.82% in MM and that of CD4 T

cells rose from 9.49% to 15.36%. Importantly,
CD8+ NKT-like cells only accounted for 0.92% of
HD BM immune cells in average, whereas it
increased to 4.86% in MM patients (Figure 2f).
iNKT cells have been shown to be associated with
MM and are important for antitumor immunity.33

We also examined the proportion of iNKT cells

Figure 1. Characterisation of immune checkpoints of MM cells. (a) The experimental workflow used in this study. (b) Markers used to define

cell populations and immune checkpoint phenotypes. (c) Gating of MM and CD45+ cells (left panel). viSNE map showing 69 253 MM cells from

the BM of MM (n = 10) patients coloured by individual. (d) Cells coloured by normalised expression of indicated immune checkpoint markers on

the viSNE map. (e) A violin plot showing the signal intensity of CD56, GAL9 and ICOSL in MM cells of individual patients. (f) Dot plots showing

the frequency of MM cells among BM cells (left panel) and indicated markers’ positive cells among MM cells for each MM BM sample (right

panel). Dots are coloured by individual. (g) A heatmap showing the Pearson correlation coefficients for relationships between the frequencies of

indicated cell populations. Abs, antibodies; BM, bone marrow; HD, healthy donor; MM, multiple myeloma. MM, n = 10.
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with the T-cell receptor Va24Ja18 antibody. We
found that they constitute a minor fraction of BM
T cells and there is no significant difference in
their percentages between HD and MM patients
(Supplementary figure 2a). Moreover, the MM
burden was positively correlated with the
frequency of CD8 T cells in MM patients and
negatively correlated with the frequency of CD16+

NK cells with a trend close to significance
(Supplementary figure 2b).

The immune checkpoint landscape of MM
BM T cells

To characterise the immune checkpoint
phenotype in MM BM immune cells, we assessed
the expression of all detected immune checkpoint
proteins in CD45+ cells on the viSNE map. ICOSL,
CD28, CD86 and GAL9 expressions were clearly
observed in several cell subsets (Figure 3a). In
contrast, no clear accumulative expression of the
other immune checkpoints appeared on the viSNE
map. However, the normalised mean expression
of these proteins was distinct among the 12 gated
immune cell populations clustered from viSNE
map (Figure 3b), suggesting the presence of
heterogeneous subgroups with high immune
checkpoint expression in these populations. Thus,
we first compared the frequencies of immune
checkpoint-positive cells in all cell populations of
HD BM with those of MM patients (Figure 3c and
Supplementary figure 3). In BM CD4 T-cell subsets,
the proportions of PD-L1+, PD-L2+, CTLA-4+, 4-1BB+

and 4-1BBL+ cells were consistently < 20%, but
were significantly higher in MM patients than
those in HD. The percentages of CD28+ and ICOS+

CD4 T cells were also significantly higher in MM
patients than in HD (Figure 3d and Supplementary
figure 4a). Moreover, PD-1+, PD-L2+, ICOS+, T-cell
immunoglobulin mucin-3 (Tim-3)+ and lymphocyte
activating 3 (LAG-3)+ CD8 T cells were significantly
increased in the BM of MM patients (Figure 3e
and Supplementary figure 4b). Additionally,
several immune checkpoints were also
significantly increased in other T-cell types, such
as the number of PD-L2+ cells in CD8+ NKT-like
cells; PD-L2+, OX40+ and Tim-3+ cells in NKT-like
cells; and CTLA-4+ and the number of Tim-3+ cells
in DNT cells. By contrast, some decreases in the
number of immune checkpoint-positive cells were
observed as well, such as CD28+ and ICOSL+ cells
in CD8+ NKT-like cells (Figure 3f and
Supplementary figure 4c–e). We also compared

the intensity of the expression of these
checkpoints in the corresponding positive cells.
The expression of CD28 was significantly stronger
in CD28+ CD4 T, CD8 T and DNT cells of MM
patients. In PD-1+ CD8+ NKT-like and CD8 T cells,
the PD-1 expression was also significantly
increased in MM patients. Many significant
changes in the expression of immune checkpoints
in CD4 T, CD8 T, NKT-like or CD8+ NKT-like cells
were discovered (Figure 3g).

The immune checkpoint atlas of MM BM
non-T cells

The frequencies of PD-1+, PD-L2+, CTLA-4+, ICOS+,
4-1BBL+, OX40+ and Tim-3+ cells in granulocytes
were significantly increased in MM patients,
although most of them were < 10% (Figure 4a
and b). Granulocytes accounted for the major
provider of ICOSL as more than 85% of them
express ICOSL in both HD and MM patients. The
frequencies of PD-1+ and 4-1BB+ cells in undefined
(the rest of) CD45+, Tim-3+ cells in DC, LAG-3+ cells
in CD16� NK cells, and PD-L2+ cells in CD16+ NK
cells were also significantly increased in MM
patients (Figure 4c–e and Supplementary figure
5a–c). Although significant differences in the
percentages of immune checkpoint-positive cells
were not detected in many cell types, the
intensity of their expression in several immune cell
populations was significantly altered in MM
patients (Figure 4f and g).

Activation signature of T and NK cells in
MM BM microenvironment

CD8 T and NK cells are major contributors to
anticancer immunity and the main targets to be
reinvigorated by immune checkpoint blockade-
based immunotherapy. HLA-DR appears at the
late stages of activated T and NK cells and has
been widely used as an activation marker.34-36

CD38 and HLA-DR are also primarily regarded as
biomarkers for identifying activated T cells.29,37

Here, the activation status of T- and NK cell
subsets was systematically quantified using these
markers. In the MM BM cells, significant increase
in activated (HLA-DR+CD38+) cells was found in
CD4 T, CD8 T, NKT-like and CD8+ NKT-like cells
(Figure 5a). Specifically, the average frequency of
activated cells in CD8 T cells was dramatically
elevated from 11.66% in HD to 40.94% in MM
patients (Figure 5b). Similarly, activated NK cells in
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Figure 2. Immune cell population changes in the BM of MM patients. (a) A viSNE map displaying gated CD45+ BM cells of five HD and 10 MM

patients coloured by groups. (b) A viSNE map coloured by the normalised expression of indicated markers. (c) A viSNE map coloured by 12 main

cell populations after clustering. (d) A heatmap showing the normalised median expression of 12 indicated markers in 12 cell populations. (e)

Frequencies of 12 cell populations in CD45+ cells for each BM sample. Cell types are indicated by colour. (f) Bar plots showing the frequencies of

indicated populations in BM CD45+ cells of HD and MM patients. HD, n = 5; MM, n = 10. DC, dendritic cells; DNT, double-negative T; Gran,

granulocytes; Mono, monocytes; NK, natural killer; r-CD45+, the rest of CD45+. *P < 0.05 and **P < 0.01.
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the BM were also increased in MM patients
(Figure 5c). A number of strong positive or
negative correlations were revealed between the
frequencies of activated T- or NK cell subsets and

indicated immune checkpoint protein-expressing
MM cells in all patients (Supplementary figure 6a).
In activated (HLA-DR+) T- or NK cell subsets,
several changes in immune checkpoint phenotype

Figure 3. Immune checkpoint changes in MM BM T cells. (a) A viSNE map coloured by the normalised expression of 15 immune checkpoint

markers. (b) Heatmaps showing the normalised mean expression of 15 immune checkpoint markers in all cell populations (normalised to the

column’s minimum). (c) Contour plots showing the gating strategy and the expression of indicated checkpoint molecules in CD8 T cells of one

representative MM patient. (d, e) Bar plots showing the frequencies of indicated markers’ positive cells in BM (d), CD4 and (e) CD8 T cells of HD

and MM patients. (f) Bar plots showing the significantly changed frequencies of indicated markers’ positive cells in CD8+ NKT-like, NKT-like and

DNT cells of HD and MM patients. (g) Bar plots showing the significantly changed median signal intensity of indicated markers in corresponding

positive T-cell subsets of HD and MM patients. HD, n = 5; MM, n = 10. *P < 0.05 and **P < 0.01.
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appeared in MM patients compared with those in
HD (Figure 5d–f), changes were also found in
inactivated (HLA-DR�) T cells (Supplementary
figure 6b and c). In addition, the expression of
important immune checkpoints, including PD-1,
CD28 and ICOS, was changed in activated (HLA-
DR+) CD4 and CD8 T cells (Figure 5g).
Coexpression of CD39 and CD103 has been used
to identify the tumor-specific CD8+ T cells in
human tumors.38,39 Here, we introduced these

two markers to examine whether increased CD8 T
cells in the BM are specific against MM cells.
However, above 90% of CD8 T or activated
CD8 T cells are CD39– and CD103–negative
(Supplementary figure 6d), suggesting that
bystander T cells instead of tumor-specific CD8 T
cells are abundant in MM BM. To identify the
immune checkpoint phenotypes in activated cells,
we compared the frequencies of the immune
marker-expressing cells in inactivated with

Figure 4. Immune checkpoint changes in MM BM non-T immune cells. (a) Contour plots showing the gating strategy and the expression of

indicated checkpoint molecules in granulocytes of one representative MM patient. (b–e) Bar plots showing the frequencies of indicated markers’

positive cells in BM (b) granulocytes, (c) DC, (d) CD16� NK and (e) CD16+ NK cells of HD and MM patients. (f, g) Bar plots showing the

significantly changed median signal intensity of indicated markers in corresponding positive (f) granulocytes, B and r-CD45+, and (g) DC, CD16+

and CD16� NK cells of HD and MM patients. HD, n = 5; MM, n = 10. *P < 0.05 and **P < 0.01.
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activated T or NK cells. Activated CD4 T cells
expressed more Tim-3, PD-1, GAL9, CTLA-4, ICOS
and 4-1BB than inactivated cells in both HD and
MM patients. More activated CD8 T cells
expressed PD-1, GAL9, ICOS, CTLA-4 and Tim-3
(Figure 5h). Moreover, compared with inactivated
cells, more activated NKT-like cells expressed
CTLA-4; more activated CD16� NK cells expressed
CTLA-4, Tim-3 and GAL9; and more activated
CD16+ NK cells expressed 4-1BB (Supplementary
figure 6e).

In-depth and systematic analyses of the
immune checkpoint profile of MM BM T
cells

As T cells are the primary anticancer contributor,
we next systematically analysed the immune
checkpoint phenotype of all possible exclusively
and significantly changed T-cell clusters. From the
viSNE containing all CD3 T cells, we observed a
huge heterogeneity of the T-cell compartments,
regarding the expression of immune modulatory
proteins (Supplementary figure 7a). We next
introduced spanning-tree progression analysis of
density-normalised events (SPADE) analysis40 to
divide all T cells into 100 minor clusters (nodes)
containing cells with similar phenotypes. On the
SPADE tree, we were able to characterise the
immune checkpoint phenotype of each cluster
and clearly observe the differences in these
clusters in each individual (Figure 6a and
Supplementary figure 7b). Using cytoClusterR, the
heterogeneity of immune checkpoint receptor
signatures across 100 T-cell clusters from all 10
MM patients or five HD was obviously revealed on
heatmaps (Figure 6b). Clusters 82, 92, 89, 68 and
42 were specifically presented in MM patients. In
each cluster, different median expressions of
immune checkpoint protein are summarised
(Figure 6b). Among these 100 T-cell clusters, the
frequencies of 42 clusters in MM patients were
significantly different from those in HD (Figure 6c
and Supplementary figure 7c). Twenty-eight
clusters displayed an activated phenotype (HLA-
DR+) and were significantly increased in MM
patients (Figure 6c), indicating that these T-cell
clusters may play pivotal roles in remodelling the
MM BM immune microenvironment. Among these
28 clusters, eight CD8 T-cell clusters, including
clusters 37, 32, 39, 21, 73, 89, 68 and 42, were
activated and PD-1+, whereas all these clusters
were deficient in CD28 expression, except cluster

89 (Figure 6d). In addition, MM burden was
significantly correlated with the frequencies of
clusters 32, 48, 76, 82, 92 and 96 in MM patients
(Figure 6e), indicating that the changes in these T-
cell clusters are MM cell-dependent.

Immune checkpoint network in the MM BM
microenvironment

We summarised the top 3 cell types providing
immune checkpoint-related receptors or ligands in
MM patients (Figure 7a). Based on these main
providers and the expression of immune
checkpoint molecules in MM cells, a list and a
network describing the interactions among MM
and immune cells through immune checkpoints
were established (Figure 7b and c). Considering
the large heterogeneity among MM patients, we
also built an immune checkpoint network for
each MM patient (Supplementary figure 8).

DISCUSSION

The BM contains a complex environment and is
filled with numerous kinds of immunoregulatory
signal from both immune and non-immune cells.
In the MM BM microenvironment, non-immune
cells, such as stromal cells, regulate
immunosuppression through cell-to-cell contact
and release extracellular vesicles and thus favor
immune evasion of MM cells.41 Immune
checkpoints expressed on immune cells maintain
the immune homeostasis, whereas MM cells
enhance the suppression signal to escape from
immune surveillance. Immune checkpoint
blockade can break this malignant cell-induced
inhibitory communication and thus lead to the
reinvigoration of anticancer immunity. Success of
immune checkpoint therapies largely relies on the
targets responsible for cancer-induced immune
suppression. To improve our understanding of the
immune signature and immune checkpoint
abnormalities in the MM BM microenvironment,
we performed a high-dimensional single-cell
analysis of the immune checkpoint molecules in
healthy and MM BM samples. This high-quality
data set identifies an unambiguous immune
checkpoint network in the MM immunologic
milieu of these patients (Figure 7b and c) and
establishes a powerful new level of insights into
MM checkpoint immunotherapy.
Mass cytometry has been recently used to

identify T-cell heterogeneity and early alterations
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in resident T cells, and innate and myeloid cells in
the BM of MM.42,43 Kourelis et al.42 have
evaluated 33 immune markers, including five
immune checkpoint molecules, in BM samples

from dysproteinaemia patients, including MGUS,
MM and AL amyloidosis, at diagnosis and after
chemotherapy, and autologous stem cell
transplant using mass cytometry. Similar to our

Figure 5. Changes in T-cell activation status in the BM of MM patients. (a) Contour plots showing the expression of CD38 and HLA-DR in 4 T-

cell subsets of one representative HD or MM patient. (b) Bar plots showing the frequencies of indicated cell clusters in BM T-cell subsets of HD

and MM patients. (c) Contour plots showing the expression of HLA-DR in NK cell subsets of one representative HD or MM patient (left panel).

Bar plots showing the frequencies of indicated clusters in BM NK cell subsets of HD and MM patients (right panel). (d) Bar plots showing the

significantly changed frequencies of indicated markers’ positive cells in HLA-DR+CD38+ T-cell subsets of HD and MM patients. (e) Bar plots

showing the significantly changed frequencies of indicated markers’ positive cells in HLA-DR+CD38� T-cell subsets of HD and MM patients. (f)

Bar plots showing the significantly changed frequencies of indicated markers’ positive cells in HLA-DR+ NK cell subsets of HD and MM patients.

(g) Bar plots showing the significantly changed median signal intensity of indicated markers in corresponding positive HLA-DR+CD38+ CD4 T,

HLA-DR+CD38� CD4 T and HLA-DR+CD38+ CD8 T cells of HD and MM patients. (h) Dot plots showing the significantly changed frequencies of

the indicated markers’ positive cells in HLA-DR�CD38� and HLA-DR+CD38+ T-cell subsets of the individual. HD, n = 5; MM, n = 10. *P < 0.05,

**P < 0.01, ***P < 0.001 and ****P < 0.0001.
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results, they also found a very low level of CTLA-4
in both CD4 and CD8 T cells and that PD-1 is
expressed by several T-cell clusters, but not by all
T cells. All identified BM cell types, except myeloid

DC, express very low level of PD-L1, further
confirming the lack of PD-1/PD-L1 checkpoint
signalling. The other recent study also analysed
the BM T cells from 7 HD and 10 MM patients and

Figure 6. Identification of the immune checkpoint signature of T cell in MM patients. (a) A SPADE tree describing 100 small T-cell clusters of

one representative HD or MM patient coloured by the median expression of indicated markers. T-cell subpopulations are gated with a grey

colour, and PD-1+ subsets are gated with a deep grey area. (b) Heatmaps showing the normalised median expression of indicated markers in 100

small T-cell clusters of all MM patients and all HD and displaying the differences in markers’ expression between T-cell clusters of MM patients

and HD (right panel). (c) Bar plots showing the significantly changed frequencies of T-cell clusters (nodes) of HD and MM patients. (d)

A heatmap showing the normalised median expression of indicated markers in significantly changed HLA-R+ T-cell clusters of MM patients. Red

boxes indicate PD-1+HLA-DR+CD38+ CD8 T-cell clusters. (e) Dot plots showing the Pearson correlation coefficients for relationships between the

frequencies of MM cells and indicated T-cell clusters. HD, n = 5; MM, n = 10. *P < 0.05, **P < 0.01 and ***P < 0.001.
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the BM myeloid cells from 4 HD and 8 MM
patients using mass cytometry.43 They discovered
greater terminal effector differentiation in
memory T cells and an increased PD-L1 expression
on myeloid cells from MM patients than healthy
donors. However, detailed status of immune
checkpoints, as well as the cell types providing
checkpoint signals, has not been identified in
these previous studies. Here, we devoted to
systemically delineate the immune checkpoint
signature of MM by measuring 10 pairs of
immune checkpoint axes in freshly isolated BM
samples from MM patients without treatment and
our data would maximally reflect the real immune
status of MM BM microenvironment.
Malignant cells offer a variety of immune

checkpoint ligands to match receptors on immune
cells and thus regulate anticancer immunity. With
the successful application of PD-1/PD-L1 axis
inhibitors in solid tumor immunotherapy, this

blocking strategy has also become a focus of MM
immunotherapy and plenty of clinical trials are
conducted.44 However, single-agent therapy with
PD-1 inhibitors fails to induce significant clinical
responses in a phase 1b study,16 suggesting that
PD-1 blockade alone is insufficient to reinvigorate
a clinically meaningful anti-MM immunity.
Discrepant results concerning PD-L1 expression on
MM cells have been reported.45 Several studies
have confirmed the limited expression of PD-L1 on
MM cells46-48; in contrast, higher PD-L1 has been
also found in MM cells than plasma cells from
HD.5,49 Our comprehensive data revealed a low
frequency (< 12%) of PD-L1 expression in MM cells
from all 10 MM patients. However, the expression
of PD-L2, another ligand for PD-1, on MM cells
was relatively higher than PD-L1. Anyhow, ligands
of PD-1 were not widely expressed by MM cells,
implicating the existence of other possible
participants in inhibitory immunity. We validated

Figure 7. The immune checkpoint network in the MM BM microenvironment. (a) Dot plots showing the top 3 frequencies of indicated markers’

positive cells in immune cell types. Dots are coloured by individual. (b) A table listing all the important checkpoints and their top 3 or 4 providers.

(c) A schematic diagram showing the main provider cells of immune checkpoint ligands and receptors, and the network among them in the MM

BM microenvironment. Act, activated. MM, n = 10.
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here that several immune checkpoint ligands,
including GAL9, ICOSL, HLA-DR, CD86, PD-L2 and
4-1BBL, were more generally presented on MM
cells and these ligands are able to largely influence
the immune response through binding to their
receptors on immune effector cells.
A significant positive correlation between MM

burden and GAL9 expression, together with the
high frequency of GAL9 expression on MM cells,
emphasises the possible contribution of this
ligand to the MM immune microenvironment. In
addition, Tim-3, a receptor of GAL9,50 was
expressed by activated CD8 T, NKT-like, DNT cells
and DC in MM patients. Tim-3-GAL9 axis provides
inhibitory immune signals to activated T cells,51

and immunotherapy targeting Tim-3 and PD-1
pathways enables the reversion of T-cell
exhaustion and restoration of antitumor
immunity,52 thus suggesting a possible use of this
strategy to reconstruct anti-MM immunity.
ICOSL was also expressed by most of MM cells, and

its receptor ICOS was increasingly detected in
20–40% of CD4 or CD8 T cells of MM patients. Being
in line with this mechanism, a higher percentage of
ICOS+ cells in follicular helper T cells has been found
in MM patients than healthy controls.53 The ICOS/
ICOSL signal can mediate helper T-cell immunity and
regulate effector T-cell differentiation.54 In vitro,
ICOS/ICOSL blockade significantly reduced the
generation of MM cell-induced inhibitory CD4+ Treg
cells,55,56 and lenalidomide, a clinically approved
anti-MM immunomodulatory drug, could inhibit
ICOSL expression in MM cells57 and enhance PD-1/
PD-L1 blockade-induced anticancer immunity in MM
patients.58 These evidences, together with our
results, underline ICOS/ICOSL blockade as a possible
enhancer for anti-MM immunotherapeutic
strategies.
T and NK cells are at the forefront of anticancer

immune responses, and quantitative and functional
abnormalities in these cells’ subsets have been well
identified in the MM BM microenvironment.2,59,60

The discovery of significant increases in CD4 T, CD8
T, CD16+ NK and CD8+ NKT-like cells in MM BM
compared with HD BM confirms an abnormal
immune cell composition induced by MM cells.
Remarkably, these increased T or NK cells are
activated in the MM samples, but with a
suppressive phenotype as several inhibitory
receptors, such as PD-1 and Tim-3, were increased.
Because of the fact that CTLA-4, 4-1BB and LAG-3
were expressed only by very few CD8 T cells,
targeting those checkpoints might be less effective.

Deep analysis of T-cell profiling identified several
specifically activated CD8 T-cell clusters highly
expressing PD-1 in MM patients, whereas most of
them are deficient in CD28 expression, a critical T-
cell costimulatory receptor that binds to B7
molecules, including CD80 and CD86.61 The failure
of PD-1 inhibitors in MM immunotherapy may
result from the deficiency of CD28 in activated CD8+

T cells as substantial evidences have demonstrated
that successful reinvigoration of exhausted CD8+ T
cells by PD-1/PD-L1 blockade is dependent on
CD28.62,63 Most likely, once CD28 signalling is
restored in these increased numbers of activated
CD8+ T cells, strong anti-MM immunity will be
achieved for controlling MM growth.
New targets or strategies are needed to increase

the success of immune checkpoint-based
immunotherapy for MM. By fine-grained analysis
of the immune cells in the MM BM
microenvironment, this study provides a detailed
atlas of the infiltrating immune cells in MM,
identifies immune checkpoints change that are
unique to the MM immunologic milieu, and reveals
distinct immune subsets that may be responsible
for anti-MM immunosuppression. These data will
be a valuable resource for future research to
explore more efficient immunotherapy strategies
tailored to restore anti-MM immunity through
inhibition of immune checkpoints. The large
individual heterogeneity in immune checkpoint
networks among MM patients also emphasises the
necessity of personalised strategies for a successful
MM immunotherapy. Our findings demonstrating
several potential immune checkpoint targets
warrant further functional investigation into
developing novel strategies for MM
immunotherapy. In addition, non-immune cell
components, such as stromal cells and extracellular
vesicles, which also play an important role in
regulating immunosuppression in the MM BM, also
need to be taken into account in discovering novel
targets for MM treatment in future.

METHODS

Human specimens

Multiple myeloma BM samples were collected from MM
patients undergoing BM biopsy for diagnosis, and healthy
BM samples were obtained from donors undergoing BM
biopsy for BM donation. Informed consents in accordance
with the Declaration of Helsinki were obtained from all
participants. All participants were recruited at the Third
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Affiliated Hospital of Sun Yat-sen University. All protocols
were reviewed and approved by the Hospital Ethics
Committee. The clinical characteristics of all participants are
listed in Supplementary table 1.

Sample processing

Bone marrow samples were collected into sodium heparin
tubes. To maximally maintain the immune profile, freshly
isolated BM cells were directly fixed using an optimised and
well-established fixing method with minimal effects on
target epitope.64 About 1–2 mL of BM samples was fixed
with Fix I Buffer (Fluidigm, South San Francisco, CA, USA) for
10 min at RT, and red blood lysis buffer was used to fully
remove the erythrocytes. Cells were then resuspended in cell
staining buffer (CSB) and Dulbecco’s phosphate-buffered
saline, supplemented with 0.5% bovine serum albumin and
0.02% sodium azide, containing 10% dimethyl sulphoxide,
and stored at �80°C until cell staining was performed.

Barcoding

To eliminate sample-specific staining variation, all samples
were barcoded first and then stained, processed and
acquired as one multiplexed sample. A total of 0.5 9 106

fixed cells from each samples were washed thrice with CSB
and washed twice with 19 Barcode Perm Buffer (Fluidigm).
These samples were then barcoded using a 20-Plex Pd
Barcoding Kit (Fluidigm). Each sample was washed thrice
with CSB after incubation with different barcodes for
30 min at RT, and all samples were combined together into
one tube for antibody staining.

Antibody staining

Combined samples were washed once with CSB and
incubated with Human Fc Receptor Binding Inhibitor
Antibody (Thermo Fisher, Waltham, MA, USA) for 10 min at
RT to lower non-specific binding. Anti-human ICOSL-biotin
(BioLegend, San Diego, CA, USA) was added to the samples
for incubation for another 30 min at RT. These cells were
washed twice with CSB and stained with 29 metal isotope-
tagged antibodies and 1 metal-labelled antibody against
biotin (Supplementary table 2) for 30 min at RT. These
stained cells were washed thrice with CSB and incubated
with 1 mL Fix & Perm Buffer (Fluidigm) containing 125 nM

Intercalator-Ir (Fluidigm) overnight at 4°C.

CyTOF data acquisition

Samples were washed twice with CSB and twice with
ultrapure water. Immediately prior to data acquisition, the
sample was resuspended in ultrapure water containing 15%
EQ Four Element Calibration Beads (Fluidigm) and filtered
through a 38-lm cell strainer. The sample was acquired on
a Helios mass cytometer (Fluidigm) at an acquisition rate of
< 500 events/s. Bead-based normalisation and debarcoding
were completed using CyTOF software 6.7 (Fluidigm).

Data analysis

Individual debarcoded files were uploaded to an online
single-cell analyser, Cytobank (Beckman Coulter, Brea, CA,
USA).65 Beads, debris and doublets were excluded from the
events, and the single-cell data were subsequently used for
high-dimensional analyses. Contour plots, viSNE, SPADE and
heatmaps were implemented using Cytobank. The
frequency of positive cells in each gated population was
determined using FlowJo (FlowJo LLC, Ashland, OR, USA).
Bar plot, violin plot and heatmap of correlationship were
generated using the GraphPad Prism software (GraphPad,
San Diego, CA, USA). The comparison of HD and MM
SPADE node was implemented using the cytoClustR R
package developed in Kordasti Lab from King’s College
London. SPSS 20.0 software (IBM, Armonk, NY, USA) was
used for the Pearson correlation analyses.

Statistical analysis

The Mann–Whitney U-test was used to determine the
statistical significance between the two groups. A paired t-
test was performed on the frequencies of different cell
subsets in individuals. Error bars represent mean � standard
error of mean (sem). A P-value < 0.05 was considered as
statistically significant.
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A Phase 1b/2 Study of Azacitidine With PD- L1 Antibody 
Avelumab in Relapsed/Refractory Acute Myeloid Leukemia
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BACKGROUND: Patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) have limited treatment options. In preclinical 

models of AML, inhibition of the PD- 1/PD- L1 axis demonstrated antileukemic activity. Avelumab is an anti– PD- L1 immune checkpoint 

inhibitor (ICI) approved in multiple solid tumors. The authors conducted a phase 1b/2 clinical trial to assess the safety and efficacy of 

azacitidine with avelumab in patients with R/R AML. METHODS: Patients aged ≥18 years who had R/R AML received azacitidine 75 mg/

m2 on days 1 through 7 and avelumab on days 1 and 14 of 28- day cycles. RESULTS: Nineteen patients were treated. The median age was 

66 years (range, 22- 83 years), 100% had European LeukemiaNet 2017 adverse- risk disease, and 63% had prior exposure to a hypometh-

ylating agent. Avelumab was dosed at 3 mg/kg for the first 7 patients and at 10 mg/kg for the subsequent 12 patients. The most common 

grade ≥3 treatment- related adverse events were neutropenia and anemia in 2 patients each. Two patients experienced immune- related

adverse events of grade 2 and grade 3 pneumonitis, respectively. The overall complete remission rate was 10.5%, and both were complete 

remission with residual thrombocytopenia. The median overall survival was 4.8 months. Bone marrow blasts were analyzed for immune- 

related markers by mass cytometry and demonstrated significantly higher expression of PD- L2 compared with PD- L1 both pretherapy 

and at all time points during therapy, with increasing PD- L2 expression on therapy. CONCLUSIONS: Although the combination of azaciti-

dine and avelumab was well tolerated, clinical activity was limited. High expression of PD- L2 on bone marrow blasts may be an important 

mechanism of resistance to anti– PD- L1 therapy in AML. Cancer 2021;127:3761-3771. © 2021 American Cancer Society. 

LAY SUMMARY: 

• This report describes the results of a phase 1b/2 study of azacitidine with the anti– PD- L1 immune checkpoint inhibitor avelumab for

patients with relapsed/refractory acute myeloid leukemia (AML).

• The clinical activity of the combination therapy was modest, with an overall response rate of 10.5%.

• However, mass cytometry analysis revealed significantly higher expression of PD- L2 compared with PD- L1 on AML blasts from all

patients who were analyzed at all time points.

• These data suggest a novel potential role for PD- L2 as a means of AML immune escape.

KEYWORDS: avelumab, azacitidine, checkpoint inhibitor, mass cytometry, PD- 1, PD- L1, PD- L2.

INTRODUCTION 
Over the past 4 years, multiple new therapies have been US Food and Drug Administration- approved for the treatment 
of acute myeloid leukemia (AML).1 Despite these advancements, outcomes for the majority of patients with AML who 
do not undergo allogeneic stem cell transplantation (allo- SCT) remain dismal, especially for those patients with relapsed/
refractory (R/R) disease who have an expected median overall survival (OS) of 4 to 7 months.2- 4

Since the initial approval of the anti– CTLA- 4 antibody ipilimumab in 2011 for melanoma, multiple immune 
checkpoint inhibitors (ICIs) targeting CTLA- 4, PD- 1, and PD- L1 have dramatically improved outcomes and 
have been approved in many solid tumors.5 Efficacy of ICIs for hematologic malignancies has generally been less  
impressive, with US Food and Drug Administration approvals limited thus far to Hodgkin lymphoma and primary 
mediastinal B- cell lymphoma.6 No ICI has received approval for leukemia, and trials assessing ICI- based therapy 
for AML have only recently been presented and published, with acceptable safety profiles but generally modest 
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efficacy.7- 12 Several reasons have been postulated for the 
limited efficacy of ICIs in AML compared with that 
in solid tumors and Hodgkin lymphoma. The protec-
tive bone marrow (BM) microenvironment might exert 
an immunosuppressive influence by preventing access 
of T cells to AML blasts or by secretion of immune- 
dampening metabolites such as IDO or arginine.13- 16 
ICI efficacy typically correlates with the tumor muta-
tional burden.17 The tumor mutational burden of AML 
is logarithmically lower compared with that of many 
solid tumor malignancies.18 However, a critical role for 
T- cell activity in the control of AML has been leveraged
for over 40 years since early demonstrations of a graft- 
versus- leukemia effect with allo- SCT and subsequently
with donor lymphocyte infusions post- SCT.19- 21 This
suggests that a broad and comprehensive evaluation of
immune strategies is warranted before final conclusions
regarding the efficacy and applicability of various im-
mune modalities in AML can be drawn.

Immune evasion in AML is likely a multifaceted 
process.22 ICI therapy for AML was first reported as 
part of a phase 1/1b clinical trial, with striking anti-
leukemic efficacy observed (especially for extramed-
ullary disease) in a subset of patients with AML who 
had post– allo- SCT relapse treated with high- dose ip-
ilimumab.8 Human AML cells express various amounts 
of transcripts for the PD- 1 ligands PD- L1 and PD- L2, 
and higher messenger RNA (mRNA) expression of  
PD- L1 and PD- L2 is correlated with inferior OS in pa-
tients with AML.23- 26 In a murine model of AML, both 
PD- 1 gene knockout as well as anti– PD- L1 murine 
ICI led to decreased leukemic burden and improved 
survival.27- 29 In patients with AML, BM- infiltrating 
T- cell populations appeared to be preserved compared
with BMs from healthy individuals, with an increased
frequency of immune inhibitory and activating core-
ceptors (especially in relapsed AML), including PD- 1,
OX40, and TIM3.30,31 Further treatment with the com-
monly used hypomethylating agent (HMA) azacitidine
increased expression of PD- 1, PD- L1, and PD- L2 in pa-
tients with myeloid malignancies.25,32 On the basis of
these data, a phase 2 trial evaluated the efficacy of azac-
itidine with nivolumab, an anti– PD- 1 ICI, in patients
with R/R AML.7 In that study of 70 patients who had
R/R AML, the overall response rate (ORR) was 33%.
The median OS was especially encouraging in salvage 1
patients (10.5 months), which was superior to matched
historical controls. Although PD- 1 and PD- L1 partici-
pate in the same axis, blockade of the tumor cell ligand
(PD- L1) rather than the effector T- cell receptor (PD- 1)

may lead to different efficacy profiles.5,33 The current 
phase 1b/2 study was designed to assess the combina-
tion of azacitidine with avelumab, an anti– PD- L1 ICI, 
in patients with R/R AML.

MATERIALS AND METHODS

Patient Eligibility
Patients who had AML that was refractory (up to 
3 prior therapies for AML) or relapsed (up to salvage 
3 status) who were aged ≤18 years with an Eastern 
Cooperative Oncology Group performance status ≤2 
and adequate organ function, defined as total biliru-
bin ≤1.5 × the upper limit of normal (ULN) (≤3 × 
ULN if considered caused by leukemic involvement or 
Gilbert syndrome), aspartate aminotransferase and ala-
nine aminotransferase levels ≤2.5 × ULN (≤5 × ULN 
if considered caused by leukemic involvement), and an 
estimated creatinine clearance >30 mL per minute (as 
calculated by the Cockcroft- Gault formula or similar 
institutional standard method), were eligible. Prior 
therapy for myelodysplastic syndrome (MDS), chronic 
myelomonocytic leukemia, or a myeloproliferative neo-
plasm was not considered as prior AML therapy. Key 
exclusion criteria included known severe hypersensi-
tivity to monoclonal antibodies, uncontrolled asthma, 
known history of severe interstitial lung disease or 
pneumonitis, prior exposure to another PD- 1/PD- L1 
inhibitor in combination with azacitidine, any active 
autoimmune disease that could deteriorate with treat-
ment, and prior organ allograft (with the exception of 
prior allo- SCT >3 months from initiation of protocol 
therapy). The study was conducted in accordance with 
the Declaration of Helsinki, and all participants signed 
a written informed consent document (ClinicalTrials.
gov identifier NCT02953561). The complete protocol 
is attached as Supporting Materials.

Study Design and Objectives
This was a phase 1b/2, nonrandomized, single- center, 
open- label study evaluating the safety and efficacy of 
avelumab in combination with azacitidine for pa-
tients with R/R AML. Patients were recruited between 
February 2017 and May 2018. The data cutoff date was 
June 1, 2020. The primary objective of the phase 1b 
portion was to determine the maximum tolerated dose 
(MTD) and dose- limiting toxicity (DLT) of the com-
bination. Definitions for DLTs and immune- related 
adverse events (irAEs) are outlined in the clinical pro-
tocol in sections 5.2.1.3 and 5.3.5, respectively (see 
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Supporting Materials). The primary objective of the 
phase 2 portion of the study was to define the ORR, 
defined as complete remission (CR) + CR with incom-
plete platelet recovery (CRp) + CR with incomplete 
blood count recovery (CRi) + morphologic leukemia- 
free state according to the AML International Working 
Group (IWG) 2003 response criteria.34 Secondary ob-
jectives included the number of patients who achieved 
>50% reduction in BM blast percentage while on ther-
apy, event- free survival (EFS), and OS. Exploratory ob-
jectives included evaluation of minimal residual disease
by multiparametric flow cytometry and longitudinal
analysis of immunological markers on peripheral blood
(PB) and BM aspirate AML blasts. AML blasts were
assessed for expression of multiple markers (including
PD- L1, PD- L2, PD- 1, CTLA- 4, TIGIT, OX40, TIM3, 
CD200, LAG3, 4- 1BB) with a mass cytometry/cytom-
etry by time- of- flight (CyTOF) panel of antibodies de-
signed and conjugated for this study (see Supporting
Methods), as described below.

Treatment Regimen and Safety Assessment
Azacitidine was administered on days 1 through 7 intrave-
nously or subcutaneously at a dose of 75 mg/m2, and ave-
lumab was administered on days 1 and 14 intravenously 
of each 28- day cycle. In the phase 1b dose- escalation 
portion, cohorts of 6 patients were enrolled in progres-
sively increasing doses of avelumab with standard dose 
azacitidine to identify the MTD and the recommended 
phase 2 dose (RP2D) for the phase 2 portion. Avelumab 
was initially administered at a −1 dose of 3 mg/kg with 
standard- dose azacitidine to the first 7 patients enrolled, 
of whom 6 were evaluable for DLTs for 28 days, as speci-
fied in the protocol. Because no DLTs were identified, the 
subsequent 6 patients received avelumab 10 mg/kg with 
standard- dose azacitidine, again with no DLTs, and this 
was identified as the MTD and selected as the RP2D for 
the combination. Up to 40 additional patients (excluding 
patients treated at the RP2D from the lead- in part) could 
be recruited for the phase 2 part. However, only an ad-
ditional 6 patients were enrolled in the expansion phase 2 
at the RP2D, for a total of 12 patients (6 from the DLT 
evaluation phase 1b and 6 in the expansion phase 2) who 
received azacitidine with avelumab 10 mg/kg. The study 
was terminated early because of modest efficacy and other 
competing protocol priorities within the institution. Dose 
interruptions of both azacitidine and avelumab were per-
mitted, as were dose reductions or modifications of azac-
itidine (for details of the full protocol, see the Supporting 
Materials). Adverse events (AEs) were defined according 

to the Common Terminology Criteria for Adverse Events, 
version 4.03.

Statistical Methods
Futility and toxicity were assessed using the Bayesian ap-
proach of Thall and Sung.35 Patient demographics were 
analyzed using descriptive statistics, and survival analyses 
were performed using Kaplan- Meier methodology. EFS 
was calculated as time from treatment initiation to change 
in AML therapy, patient death from any cause, or loss 
to follow- up. OS was calculated as the time from treat-
ment initiation to death from any cause. For comparisons 
of PD- L1 and PD- L2 blast expression, statistical analy-
ses were performed using the Wilcoxon matched- pairs 
signed- rank test. For comparisons of OS based on salvage 
status and prior HMA exposure, statistical analyses were 
performed using the Mann- Whitney test.

Immunophenotyping of BM and PB Samples by 
Mass Cytometry
Frozen primary BM samples were thawed and immedi-
ately incubated in thawing media (10 mL Eagle’s mini-
mum essential medium, α modification; Sigma Life 
Science) with 20% heat- inactivated fetal bovine serum 
(GenDEPOT), 10 mM MgSO4, 100 μg/mL heparin, 
and DNAse for 15 minutes at 37 °C before CyTOF stain-
ing. Sample barcoding and metal- conjugated antibody 
staining were performed according to Fluidigm protocols 
(for additional details, including the customized panel of 
antibodies used, see Supporting Methods).

Mass Cytometry Data Analysis
Data were first demultiplexed using Fluidigm Debarcoder 
software. Individual mass cytometry data files (.fcs) were 
then filtered using FlowJo to remove the normalization 
beads, debris, doublets, and dead cells. Remaining analy-
ses were performed in R (version 3.6.1; The R Foundation 
for Statistical Computing) using the R packages cytofkit36 
and flowcore.37 Processed data were subjected to negative 
value- pruned, inverse hyperbolic sine transformation and 
clustered based on the PhenoGraph algorithm (k = 22) 
using all cell surface markers.38 Dimensionality reduction 
was performed using the uniform manifold approxima-
tion and projection method.39

RESULTS

Patient Characteristics and Treatment
Between February 2017 and May 2018, 19 patients with 
R/R AML were enrolled and treated. These included 
6 patients in the safety cohort. Patient characteristics are 
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summarized in Table 1. The median age at enrollment 
was 66 years (range, 22- 83 years), and 68% of patients 
had secondary AML. This was a high- risk population: 
all 19 patients had adverse- risk disease according to the 
ELN 2017 risk stratification criteria, and 74% of patients 
had adverse cytogenetics according to ELN 2017 crite-
ria.40 The median number of prior treatment regimens for 
AML was 1 (range, 1- 3 prior treatments). Twelve (63%) 
patients had prior HMA exposure with azacitidine, decit-
abine, or SGI- 110 (an investigational prodrug of decit-
abine) for MDS or AML. Of the 12 patients with prior 

HMA exposure, 6 had prior azacitidine exposure, and 6 
had prior HMA exposure for AML. Three patients had 
prior allo- SCT, including 2 who had 2 prior allo- SCTs. 
TP53 was the most common mutation (37%) identified.

All patients who received at least 1 dose of azaciti-
dine and 1 dose of avelumab were evaluable for efficacy 
and safety per an intention- to- treat approach.

Safety
All treatment- related AEs (TRAEs) occurring in 
≥10% of patients (ie, at least 2 patients) are listed in 
Table 2. The most common TRAEs were diarrhea (n = 5),  
fatigue (n = 5), nausea (n = 5), infusion reactions (n = 4), 
and mucositis (n = 4). IrAEs occurred in only 2 patients 
(10.5%), and both were pneumonitis (1 grade 3 and 1 
grade 2). An additional patient developed grade 2 pneu-
monia/pneumonitis attributed to cytomegalovirus, which 
was confirmed by viral culture from a bronchoalveolar 
lavage sample, and she was treated with valganciclovir. 
Both patients with possible ICI- related pneumonitis were 
diagnosed clinically based on hypoxemia in the presence 
of radiographic findings on computed tomography imag-
ing and no evidence of an alternative explanation after an 
extensive workup (such as cardiac, pulmonary, or infec-
tious). The first patient with an irAE experienced grade 3 
pneumonitis during cycle 3, 98 days after study entrance 
(she received both doses of avelumab during cycle 1 and 

TABLE 1. Baseline Patient Characteristics at the 
Time of Treatment Initiation, N = 19

Characteristic
No. of Patients (%) 
or Median [Range]

Age, y 66 [22- 83]
≥60 y 14 (74)

Sex
Women 9 (47)

Diagnosis
De novo AML 6 (32)
Secondary AML 13 (68)

Prior HMA exposure for MDS or AML 12 (63)
No. of prior regimens for AMLa 1 [1- 3]
Prior regimens for AML

HMA- based 6 (32)
HiDAC 8 (42)
IDAC 10 (53)
Targeted therapiesb 7 (37)

Prior allogeneic SCT 3 (16)
BM blasts, % 40 [7- 88]
White blood cell count, ×109/L 2.4 [0.7- 39.4]
Platelets, ×109/L 22 [2- 67]
ELN risk classification: Cytogenetics and 

mutations
Favorable 0 (0)
Intermediate 0 (0)
Adverse 19 (100)

Cytogenetics by ELN classification
Favorable 0 (0)
Intermediate 5 (26)
Adverse 14 (74)

Molecular mutational panelc

TP53 7 (37)
TET2 5 (26)
ASXL1 5 (26)
CEBPA 2 (11)
RAS 4 (21)
GATA2 2 (11)
SRSF2 3 (16)
SF3B1 2 (11)
RUNX1 5 (26)

Abbreviations: AML, acute myeloid leukemia; BM, bone marrow; ELN, 
European LeukemiaNet; HiDAC, high- dose cytarabine based; HMA, hypo-
methylating agent; IDAC, intermediate- dose cytarabine- based; MDS, myelo-
dysplastic syndrome; SCT, stem cell transplantation.
aFor patients who had relapsed acute myeloid leukemia after allogeneic SCT, 
the included regimens were received before allogeneic SCT.
bTargeted therapies included: IDH1 inhibitor, anti- CD33 antibody- drug conju-
gate, BET inhibitor, SYK inhibitor, Grb- 2 antisense oligonucleotide, and SMAC 
mimetic.
cThe mutations listed were present in ≥2 patients.

TABLE 2. Treatment- Related Adverse Events 
Occurring in ≥10% of Patients

Adverse Event

No. of Patients (%)

Any Grade Grade ≥3

Diarrhea 5 (26.3) 1 (5.3)
Fatigue 5 (26.3) 1 (5.3)
Nausea 5 (26.3) 1 (5.3)
Infusion- related reaction 4 (21.1)
Oral mucositis 4 (21.1)
Anorexia 3 (15.8) 1 (5.3)
Constipation 3 (15.8)
Anemia 3 (15.8) 2 (10.5)
Increased ALT 2 (10.5)
Chills 2 (10.5)
Hypertension 2 (10.5)
Maculopapular rash 2 (10.5)
Muscle weakness 2 (10.5)
Pleural effusion 2 (10.5)
Pneumonitis 2 (10.5) 1 (5.3)
Leukopenia 2 (10.5)
Neutropenia 2 (10.5) 2 (10.5)a

Lymphopenia 2 (10.5) 1 (5.3)

Abbreviation: ALT, alanine aminotransferase.
aOne of these was grade 4 neutropenia and was the only grade 4 treatment- 
related adverse event. No grade 5 treatment- related adverse events were 
documented.

	 56	



Azacitidine and Avelumab in AML/Saxena et al

Cancer  October 15, 2021

no more doses of avelumab after cycle 1 because of an un-
derlying fungal pneumonia, which immediately preceded 
cycle 1 of azacitidine plus avelumab). During cycle 2, the 
patient developed a bacterial pneumonia. During cycle 3, 
the patient developed worsening bilateral lung ground- 
glass opacities and hypoxemia without a clear infectious or 
cardiac etiology despite not having received avelumab for 
84 days. In the absence of a clear alternative etiology, this 
event was attributed as a possible irAE from avelumab. 
She received steroids for 36 days, was hospitalized for 9 
days after pneumonitis onset, and was taken off study 
after this event because of lack of response to azacitidine 
plus avelumab. The second patient experienced grade 2 
pneumonitis on day 9 during cycle 1 (after the first dose 
of avelumab). He received steroids for 7 days, was hospi-
talized for 16 days after pneumonitis onset, and remained 
on study with azacitidine alone without further avelumab 
exposure. An additional patient developed grade 3 diar-
rhea of unclear etiology that self- resolved within 3 days 
without steroid or immunosuppressive therapy and thus 
was not considered an irAE but was attributed as possibly 
(Common Terminology Criteria for Adverse Events attri-
bution is a score of 3 for possible) related to azacitidine. 
A separate patient developed grade 3 colitis, which was 
attributed to Clostridium difficile infection based on posi-
tive stool C. diff DNA testing. There was 1 grade 4 TRAE 
(neutropenia), and no grade 5 TRAEs were reported. All 
AEs of any grade and frequency, regardless of attribution, 
are listed in Supporting Table 1 and all serious AEs are 
listed in Supporting Table 2. The most common AEs,  
irrespective of attribution, were constipation (n = 12),  
fatigue (n = 11), and muscle weakness (n = 11). The 
most common grade ≥3 AEs, irrespective of attribution, 
were neutropenic fever (n = 6) and pneumonia (n = 5).

The median number of cycles of therapy received 
was 3 (range, 1- 7 cycles), and the median time on study 
was 3.3 months. The median duration of cycle 1 and 2 
was 28 and 30 days, respectively. Azacitidine was held for 
at least 1 dose in 5 patients for the following indications: 
neutropenic fever (n = 3), patient preference to stop ther-
apy and transition to hospice care (n = 1), and travel dif-
ficulties (n = 1). Avelumab was held for at least 1 dose in 
13 patients for the following indications (some patients 
had doses held for multiple indications): pneumonia  
(n = 2), patient preference (n = 2), travel/scheduling dif-
ficulties (n = 2), pneumonitis (n = 1), infusion reaction 
(n = 1), neutropenic fever (n = 1), elevated creatinine  
(n = 1), hyperbilirubinemia (n = 1), hypercalcemia 
(n = 1), and deconditioning (n = 1) (see Supporting 
Table 3). The median number of avelumab doses received 

per patient was 5 (range, 1- 14 doses). Reasons for study 
discontinuation were lack or loss of response with sub-
sequent therapy change (n = 8), lack or loss of response 
without subsequent therapy change (n = 3), transition to 
hospice care (n = 3), therapy change to ease travel needs 
per patient preference (n = 1), and death while on treat-
ment (n = 4).

Responses and Survival
The ORR according to IWG 2003 criteria was 10.5%, 
with 2 patients achieving CRp, as indicated in Table 3. 
Both patients were positive for minimal residual disease 
by multiparametric flow cytometry through the course 
of their response. The first patient had secondary AML, 
diploid cytogenetics, and mutations in TET2 and RUNX1 
and was initially treated with cladribine plus SGI- 110  
(a prodrug of decitabine) without sufficient response, 
and he remained transfusion- dependent on platelets. He  
received azacitidine plus avelumab (3 mg/kg cohort) with 
7% BM blasts pretreatment. He achieved CRp with 2% 
blasts at the end of cycle 1 and had 0% blasts at the end of 
cycle 3. He continued on therapy for 6 cycles (7.6 months 
on treatment), remaining red blood cell transfusion- 
independent but platelet transfusion- dependent. During 
cycle 5, the patient was beginning to lose response, with 
the emergence of 1% to 2% blasts in the PM (BM was 
deferred to confirm relapse). After cycle 6, he became newly 
transfusion- dependent on red blood cells in addition to 
platelets. Treatment was discontinued without subsequent 
therapy change because of patient preference to transition 
to supportive care locally (patient was from out of state). 
The second patient with an objective response had de novo 
AML, complex cytogenetics, and mutations in ASXL1, 
SRSF2, SETBP1, and RUNX1. He was refractory to 7 + 3 
and started azacitidine plus avelumab (10 mg/kg) with 35% 
BM blasts pretreatment. The patient achieved CRp with 
4% blasts at the end of cycle 1 and had 4% blasts at the end 
of cycle 2. The patient experienced grade 2 pneumonitis 
after his first dose of avelumab and did not receive further 
avelumab for the remainder of the study. He did not have 
further BM biopsies and continued on study protocol with 
azacitidine alone for a total of 5 cycles (5 months). The 
patient came off protocol because of difficulty traveling 
and continued azacitidine monotherapy closer to home for 
at least 4 more months. He died from disease progression  
approximately 6 months after coming off protocol.

Three additional patients had BM blast reductions of 
>50% from pretherapy (51% → 25%, 32% → 12%, and
40% → 13%; median time to >50% blast reduction, 26
days) that did not meet IWG criteria for a partial response
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or for CR/CRi/CRp, and 1 patient had stable disease for 
7.8 months. The remaining 13 patients had no evidence 
of response or clinical benefit. The 30- day mortality was 
11%; 1 patient died on day 4 from rapidly progressive dis-
ease, and one patient died on day 21 from sepsis secondary 
to pneumonia. An additional 2 deaths occurred between 
treatment days 31 and 60; 1 from rapidly progressive dis-
ease after 1 cycle with transition to hospice care and the 
other during cycle 2 from unknown causes at home. At 
the time of data analysis, all 19 patients had died. The 
median EFS was 3.6 months (range, 0.1- 10.2 months) 
(Fig. 1A). The median OS was 4.8 months (range, 0.1- 
11 months) (Fig. 1B). The median OS in salvage 1 versus 
salvage >1 patients was 5.8 versus 4.6 months (P = .84), 
respectively. The median OS in TP53- mutated patients 
was 4.8 months. The median OS in patients with prior 
HMA exposure versus HMA- naive patients was 5.7 versus 
4.6 months (P = .53), respectively. The 2 patients who 
achieved CRp had an OS of 10.2 and 11 months.

Immune Profiling by Mass Cytometry
To characterize cellular markers that may predict ICI ef-
ficacy, we performed mass cytometry (CyTOF) on BM 
aspirate and PB samples from 9 patients who were treated 
on study. We first assessed pretherapy PD- L1 and PD- 
L2 surface expression by performing CyTOF on nonper-
meabilized BM and PB blasts (Fig. 2). For all patients 

assessed, there were significantly more BM blasts ex-
pressing PD- L2 than PD- L1 (median, 34.9% vs 12%; 
P < .005) (Table 4). Double- positive (PD- L1- positive/
PD- L2- positive) blasts accounted for only 4% (median) 
of BM blasts. Similar to BM blasts, PB blasts displayed 
higher expression of PD- L2 versus PD- L1 (Figs. 2 and 3).

Next, we assessed whether the percentage of BM blasts 
expressing PD- L2 and PD- L1 changed during treatment 
with azacitidine plus avelumab by performing mass cytom-
etry on serially obtained BM aspirate samples from 8 pa-
tients. For all 8 patients, PD- L2 expression remained more 
abundant than PD- L1 expression at each time point (see 
Supporting Fig. 1). Finally, we evaluated BM blast expres-
sion of other immune- related markers, including OX40, 
LAG3, PD- 1, and CTLA- 4. Expression of these markers was 
assessed pretherapy and compared with expression on BM 
blasts from samples obtained before trial discontinuation 

TABLE 3. Best International Working Group 
Response Attained on Trial, N = 19

Characteristic
No. of 

Patients(%)

Overall response rate 2 (10.5)
CR 0 (0.0)
CRi/CRp 2 (10.5)a

PR/MLFS 0 (0.0)
50% Blast reduction without count recoveryb 3 (15.8)
Stable disease >6 moc 1 (5.3)
Nonresponders 13 (68.4)
Median no. of cycles to best response

CRi/CRp 1
Blast reduction: Median [range]b 1 [1- 3]

30- Day mortality 2 (10.5)
60- Day mortality 4 (21.0)

Abbreviations: CR, complete remission; CRi, complete remission with incom-
plete count recovery; CRp, complete remission with residual thrombocytope-
nia; MLFS, morphologic leukemia- free state; PR, partial response.
aBoth patients had CRp and were positive for minimal residual disease by 
flow cytometry through response.
bBlast reduction without count recovery was defined as a reduction in the 
bone marrow blast percentage by at least one- half without recovery to an 
absolute neutrophil count ≥1000/μL and a platelet count ≥100,000/μL.
cStable disease was defined as the absence of CR, CRi, PR, MLFS, hema-
tologic improvement without evidence of clinical deterioration or progressive 
disease, maintained >6 months on study. The stable disease in this patient
was maintained for 7.8 months.

Figure 1. Survival analyses, including (A) event- free survival 
(EFS) and (B) overall survival (OS), are illustrated for all 19 
patients who were treated on the clinical trial of azacitidine 
plus avelumab.
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to assess increase, decrease, or stable expression of the im-
mune marker on BM blasts (see Supporting Fig. 2). We 
noted that PD- L2 was the most frequent immune marker 
to be increased by >5% from baseline on BM blasts (in 
5 of 8 patients) during treatment. No other correlations 
were found in the change in blast surface immune- related 
marker expression during treatment. Most of the immune 
checkpoints interrogated were present on only a subset of 
BM blasts in each patient, and PD- L2 (median, 34%), 
TIGIT (median, 20.5%), and CTLA- 4 (median, 18.5%) 
were the most abundant checkpoints expressed at baseline. 
Given that only 2 of the patients analyzed had evidence 
of an antileukemic response to treatment (2 of 8 evaluated 
[patients 5 and 6]), we did not perform analysis comparing 
responders with nonresponders.

DISCUSSION
On the basis of historical evidence of a T- cell– 
mediated antileukemic effect from allo- SCT and donor 

lymphocyte infusion, as well as more recent data dem-
onstrating early efficacy signals of CTLA- 4 and PD- 1 
ICIs in AML, we conducted a study to assess the com-
bination of azacitidine and the anti– PD- L1 antibody 
avelumab in patients with R/R AML. The regimen was 
well tolerated. Four patients died while on active treat-
ment; no deaths were directly attributable to treatment. 
Only 2 patients had irAEs (both pneumonitis), and 1 
patient permanently discontinued avelumab treatment 
because of the irAE (grade 2 pneumonitis). Notably, 
this patient was 1 of only 2 patients who experienced 
an objective response, with a BM blast reduction from 
35% to 4%. Although the patient only received 1 dose 
of avelumab (after which he developed pneumonitis), 
he maintained a clinical response to azacitidine mono-
therapy for several more cycles, suggesting the possibil-
ity of immune- mediated disease control. In solid tumor 
malignancies, the occurrence of irAEs may correlate 
with enhanced response to ICI therapy.41

Figure 2. Pretreatment PD- L1 and PD- L2 expression levels are illustrated on peripheral blood (PB) blasts and bone marrow (BM) 
blasts in 6 patients. Displayed are the percentages of acute myeloid leukemia blasts that were PD- L1– positive versus PD- L2– positive 
in (Left) BM and (Right) PB in pretreatment samples from 6 different patients.

TABLE 4. Immunophenotype of Bone Marrow Blasts Pretreatment With Azacitidine Plus Avelumab

Patient % Bone Marrow Blasts % PD- L1+ % PD- L2+
% PD- L1+/PD- L2+

(Double Positive)
Best Response 
on Therapy

1 28 12.0 50.1 6.6 Stable disease
2 53 16.2 64.3 10.7 No response
3 27 9.0 34.9 3.2 No response
4 59 8.2 26.9 2.4 No response
5 7 7.1 26.3 4.0 CRp
6 51 3.1 16.9 0.6 Blast reduction
7 45 12.4 32.9 4.0 No response
8 38 21.9 53.3 11.3 No response
9 57 31.6 62.4 21.3 No response

Abbreviations: +, positive; CRp, complete remission with residual thrombocytopenia.
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The ORR in this study was 11% (both CRp), 
with a median OS of 4.8 months in all patients and a 
median OS of 5.7 months in previously HMA- naive 
patients. This efficacy is comparable to the historical 
CR/CRi rate of 16% and the median OS of 6.7 months 
achieved with azacitidine monotherapy in a large co-
hort of previously HMA- naive patients with R/R AML 
and suggests that the addition of avelumab did not 
add clinical benefit.4 These results stand in contrast to 
those from a previous phase 2 study of azacitidine plus 
nivolumab for R/R AML (ClinicalTrials.gov identifier 
NCT02397720) in which the ORR was 33% (CR/
CRi rate, 22%), the median OS in all patients was 6.3 
months, and the median OS in salvage 1 patients was 
10.6 months.7 In that study, previously HMA- naive pa-
tients had a very encouraging ORR of 52%. Both the 
current study and the azacitidine plus nivolumab study 
were conducted in a similar patient population during 
similar time frames at the same institution: median 
age, 66 versus 70 years; median 1 versus 2 prior lines of 
therapy; 63% versus 64% of patients with prior HMA 
exposure; median pretreatment BM blast percentage, 
35% versus 40%; and 16% versus 19% with prior allo- 
SCT.7 Thus the main apparent difference between these 
2 studies, with the caveats of cross- trial comparisons, 
appears to be use of the anti– PD- 1 nivolumab in the 
prior trial and use of the anti– PD- L1 avelumab in the 
current trial.

Interestingly, these results do not appear unique to 
nivolumab or avelumab. Two additional phase 2 trials 
of ICI for AML recently performed at other centers also 
suggest contrasting efficacy between anti– PD- 1 and anti– 
PD- L1 therapy. In a phase 2 study of the anti– PD- 1 ICI 
pembrolizumab with azacitidine (ClinicalTrials.gov iden-
tifier NCT02845297), 2 cohorts were enrolled: 1 cohort 
of patients with R/R AML and 1 cohort of treatment- naive 
patients who were ineligible for intensive chemotherapy.9 
In the R/R AML cohort, the ORR was 32% (CR/CRi, 
14%) with median OS of 10.8 months, similar to results 
from the azacitidine plus nivolumab study.9 Notably, the 
treatment- naive cohort had an ORR of 71% (CR/CRi, 
47%) and a median OS of 13.1 months.9 A separate inter-
national, randomized phase 2 study compared azacitidine 
with or without the anti– PD- L1 durvalumab for front-
line treatment- naive patients who had higher risk MDS 
or AML (ClinicalTrials.gov identifier NCT02775903).11 
That study included 129 patients with AML: 64 patients 
received azacitidine with durvalumab, and 65 received 
azacitidine alone.11 The CR/CRi rates were similar in 
both arms (31% vs 35%, respectively), as was the median 
OS (13 vs 14.4 months, respectively), suggesting no ben-
efit from the addition of durvalumab.11 Thus, based on 
these 4 publicly presented studies of azacitidine with ICI 
for patients with AML, 2 conclusions may be suggested. 
First, azacitidine with an ICI (anti– PD- 1 or anti– PD- L1), 
as with almost all other AML therapies, appears to be 

Figure 3. Representative PD- L1/PD- L2 baseline expression in bone marrow (BM) and peripheral blood (PB) are shown. This 
representative cytometry by time- of- flight plot from a patient’s BM and PB illustrates relative PD- L1 and PD- L2 expression on blasts.
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more effective in treatment- naive patients than in patients 
with R/R disease. Second, regardless of frontline or R/R 
disease, anti– PD- L1 therapy appears to generate inferior 
response and OS compared with anti– PD- 1 therapy in 
combination with azacitidine. It is important to note that 
both of these conclusions must be interpreted within the 
limitations and constraints of cross- trial comparisons, and 
with only 1 of the 4 studies including a randomized co-
hort (azacitidine with or without durvalumab).

Given that ICI therapy with PD- 1 versus PD- L1 
blockade has not been directly assessed in a randomized 
trial for any malignancy, it must be acknowledged that 
comparing these 2 approaches implements an inherently 
biased method of comparing outcomes between clinical 
trials. However, there is precedent for anti– PD- 1 therapy 
to lead to improved outcomes compared with anti– PD- L1 
therapy. In a recently published meta- analysis of 19 ran-
domized controlled trials of ICI therapy with anti– PD- 1 
versus anti– PD- L1 for solid tumors, anti– PD- 1– based 
therapy resulted in improved OS and progression- free 
survival compared with anti– PD- L1.42 It is possible 
that a similar phenomenon exists in AML. The basis for 
such a difference may be caused in part by the inability 
of anti– PD- L1 ICIs to block PD- L2. In the classic PD- 
1– mediated immune axis, tumor cells expressing PD- L1 
and/or PD- L2 can engage the PD- 1 receptor on circu-
lating/infiltrating T cells, thereby promoting peripheral 
immune tolerance of tumor cells.5 PD- L1 is expressed 
on numerous cell types, whereas PD- L2 is expressed pri-
marily on hematopoietic cells, including myeloid leuko-
cytes.43- 46 Emerging data have shown that PD- L2 may 
play an important role in solid tumor immune evasion 
and that PD- L2 has a higher affinity for PD- 1 than does 
PD- L1.47,48 Because anti– PD- 1 antibodies block the in-
teraction between PD- 1/PD- L1 and PD- 1/PD- L2, both 
ligands are blocked with these ICIs, whereas anti– PD- L1 
antibodies leave PD- L2 free to engage PD- 1 and poten-
tially allow immune evasion/tolerance.

AML blasts have been shown to express PD- L1, PD- 
L2, and PD- 1 at the mRNA level, and coexpression of 
different immune checkpoint transcripts correlates with 
inferior outcomes.25,26 Expression of mRNA does not al-
ways correlate with protein expression (including for PD- 
L1 and PD- L2) and, to our knowledge, PD- L2 surface 
protein expression has not been extensively characterized 
on AML blasts.45 We found that 8 of 9 patients assessed 
by mass cytometry had >25% PD- L2– positive pretreat-
ment blasts (median PD- L2 protein expression on blasts, 
34.9%). By comparison, only 1 of 9 patients had >25% 
PD- L1– positive pretreatment blasts (median PD- L1 

expression, 12%). Given that these patients had not had 
prior ICI exposure pretreatment, these data suggest that 
the elevated baseline PD- L2:PD- L1 ratio was not due to 
selective pressure by treatment with an anti– PD- L1 anti-
body. Although surface expression patterns varied during 
treatment, all patients assessed had more blasts express-
ing PD- L2 compared with PD- L1 at each time point. 
Furthermore, in nearly all patients at each time point 
examined, PD- L2 was the most frequently expressed of 
10 examined immune markers on BM blasts. PD- L2 was 
also the most common immune marker for which BM 
expression increased by >5% on BM blasts from pretreat-
ment to end of treatment. Although our study is limited 
by a small sample size, and only a subset of patients had 
BM aspirate samples with sufficient quality/quantity of 
cells to undergo immune marker profiling by CyTOF, the 
conserved findings across all examined patients at all time 
points of higher PD- L2 surface protein expression on BM 
blasts compared with PD- L1 appears notable. Together, 
these data suggest that high pretherapy PD- L2 expression 
and increasing on- therapy PD- L2 expression may have 
promoted PD- L2– mediated escape from anti– PD- L1 
therapy. To our knowledge, this study provides the first 
characterization of PD- L2 surface expression on AML 
blasts and provides a baseline observation on which to 
pursue future studies investigating PD- L2 as a potential 
means of immune escape in AML.

In conclusion, blockade of the PD- 1/PD- L axis with 
anti– PD- 1 antibodies may be a superior method of dis-
rupting peripheral immune tolerance than anti– PD- L1 
ICIs for AML because of the high expression of PD- L2 
found on AML blasts. Future ICI studies in myeloid ma-
lignancies may be best served by focusing on anti PD- 1– 
based therapies.
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CyTOF XT 
The Next Generation of Mass Cytometry

Introduction
CyTOF® Technology. Mass cytometry is a powerful 
technology that utilizes a time-of-flight mass  
spectrometer to enable the detection of single cells 
tagged with isotopically pure metal-labeled reagents. 
CyTOF overcomes the limitations of fluorescence-based 
detection systems by separating signals according to 
differences in isotope mass instead of wavelength.  
The negligible signal overlap between masses allows 
for simultaneous detection of over 50 targets in a single 
sample tube, a panel size that has not been achieved 
by any flow or spectral cytometer to date. The use of a 
universal internal standard—multi-element calibration 
beads—makes it possible to normalize data across 
instruments and experiments. Mass cytometry thus 
generates the highest-parameter snapshot of  
phenotype and function for every cell.

CyTOF Value. Mass cytometers provide impressively 
high resolution of cytometric profiles, empowering both 
basic research and practical biomarker-driven clinical 
research to potentially optimize and personalize disease 
management. CyTOF instruments have proven to be 
valuable additions to cytometry core facilities and service 
labs, and have been adopted for use by key clinical 
research consortia1,2,3 and in scores of Clinical Research 
Trials (see Related documents).

The NeXT Generation. Fluidigm now introduces a new 
generation of mass cytometer, the CyTOF XT™, (Figure 1). 
The novel design, fully automated sample acquisition,  
and easier operational workflows of CyTOF XT simplify 
the planning and execution of high-parameter cell 
profiling studies.

Objectives
 This application note presents information on key 
CyTOF XT features demonstrating the following 
advances in instrument benefits and performance:
•  Fully automated acquisition with the new

Autosampler to increase productivity and sample
throughput with negligible carryover

•  Unique system design and software logic to sense
and remove clogs

•  Automated detector voltage (DV) optimization to
maintain signal stability during extended acquisitions

•  High degree of agreement between data collected
on CyTOF XT and Helios™ instruments

•  An array of data management improvements,
including on-the-fly normalization and processing,
the latest industry file format (FCS 3.1), optimized
storage requirements, a range of troubleshooting
options, and many more

Figure 1. CyTOF XT, featuring a streamlined 
design and automatic sample acquisition.

Application Note
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CyTOF XT enables walk-away sample 
acquisition for increased productivity
Improving on previous CyTOF instruments that required 
manual loading of each sample before acquisition. 
CyTOF XT revolutionizes sample delivery with the 
Autosampler Module and a simplified front end 
assembly. The new Autosampler consists of 4 major 
components: the sample probe, a syringe-based pump 
unit, a tray for acquisition and cleaning solutions, and 
most important, a carousel that holds 13 sample tubes 
chilled at 4–8 °C. The Autosampler enables automated 
sample delivery over long acquisitions while maintaining 
sample integrity.

The CyTOF XT with the Autosampler Module automates 
the following processes: 

• Tuning the instrument

• Cleaning the sample fluidics

• Acquisition of samples already in suspension

•  Resuspension, addition of EQ™ Calibration Beads,
and acquisition of pelleted samples

• Detection and removal of clogs

This combination of features greatly reduces the need 
for operator interaction with the instrument during 
sample acquisition. Hands-on interaction is required 
only to load calibration beads and set up samples in the 
carousel (Figure 2). In addition, CyTOF Software v8.0 for 
CyTOF XT performs data normalization during sample 
acquisition, which further frees up operator time while 
the data file is processed automatically.

Routine workday comparison
Although many workflow steps for Helios and  
CyTOF XT are similar, there are several key differences. 
Figure 2 highlights the significant time savings and 
streamlined workflow of a model workday using CyTOF 
XT as compared to a workday with Helios. In this 
example (Figure 2A), 10 whole blood samples stained 
with the Maxpar® Direct™ Immune Profiling Assay™  
(Cat. No. 201325) are acquired in a typical 8-hour 
workday. Highlighting the instrument’s advancement  
in extended acquisition, Figure 2B demonstrates the  
ability of CyTOF XT to acquire 42 samples within  
a 23-hour period. The following sections describe  
these example workdays on Helios and CyTOF XT  
in greater detail. 

Helios is optimized for single-tube data acquisition. 
After the plasma is ignited and the Helios system is 
warmed up, tuning solution must be loaded manually, 
followed by instrument tuning, a bead sensitivity test, 
and conditioning of the plasma with Maxpar Cell 
Acquisition Solution (CAS, Cat. No. 201240). The first 
sample may then be loaded into the Sample Loader for 
acquisition according to the sample criteria selected. In 
the workday example (Figure 2A, Helios), purple time 
bars between samples indicate the manual handling 
steps, such as sample preparation (resuspension and 
filtering), data normalization, and cleaning between 
samples with CyTOF Washing Solution (Cat. No. 
201071) and CAS. In this example, user intervention is 
required for routine instrument cleaning and shutdown 
procedures at the end of a workday. The Helios 
acquisition of these 10 samples with monitoring requires 
approximately 7 hr 15 min. (Figure 2A, Helios). 

Hands-on

Monitor onsite

Hands-free day

Hands-free night

Helios CyTOF XT

12 

3

6 

9

12 

3

6 

9

10 samples acquired within 8 hours 42 samples acquired within 23 hours

12 

3

6 

9
CyTOF XT

A B

Figure 2. Comparison of a model workday on Helios and CyTOF XT. A) Representation of Helios (left) and CyTOF XT (right) acquisition of 
10 tubes of whole blood samples stained with the Maxpar Direct Immune Profiling Assay. Each purple block represents hands-on time when 
interaction with the instrument is required. Orange blocks represent hands-free automated periods. B) Representation of an extended CyTOF 
XT acquisition when, upon completion of the first 10 samples, the carousel is reloaded with a new batch of 12 samples stained with the Maxpar 
Direct Immune Profiling Assay and 1 large-volume (12 mL) tube of a 20-plex barcoded sample for unattended acquisition. This model example 
illustrates how 42 samples could be acquired on the CyTOF XT within a 23-hour period.  
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CyTOF XT delivers sample batch 
acquisitions without sample carryover
The walk-away sample preparation and acquisition 
enabled by CyTOF XT is achieved through the sample 
handling advancements of the Autosampler. Sample 
carryover is a concern for any sample introduction system. 
This section describes the built-in cleaning of sample 
probe and Autosampler lines, which minimizes carryover.

CyTOF XT is designed to perform automated washes 
of the sample line fluidics. Both the inside and outside 
of the sample probe are washed between samples. 
Different pre-wash settings can be applied to avoid 
carryover depending on the sample type: Light, 
Medium (default setting), and Heavy, which vary in 
washing time, pulsing, and/or solutions used. For  
more information, refer to the CyTOF Software v8.0  
Help for CyTOF XT (FLDM-00045), also available as 
the software integrated help guide. 

To demonstrate the absence of unwanted sample 
carryover, the following test was performed.

Sample carryover study design 
Two separate sets of human peripheral blood 
mononuclear cell (PBMC) samples were barcoded 
using 2 different barcoding workflows: Cell-ID™ 20-Plex 
Pd Barcoding Kit (Cat. No. 201060) for palladium (Pd) 
barcoding up to 20 samples, and 7 individual cadmium 
(Cd)-labeled anti-CD45 antibodies from Fluidigm for 
35-plex live-cell barcoding. Barcoding uniquely labels
multiple individual samples with a combination of Pd
or Cd isotopes, allowing the samples to be pooled
together in 1 tube for staining and acquisition. Individual
samples can then be identified based on their unique
combination of Pd or Cd isotopes. (To learn more about
barcoding options, refer to The Benefits of Palladium
Barcoding on Data Quality and Workflow (FLDM-00012)
and Enabling Live-Cell Barcoding with Anti-CD45
Antibodies in Suspension Mass Cytometry (FLDM-
00488) available at fluidigm.com.)

Replicates from each barcoded and pelleted sample 
were loaded into the CyTOF XT carousel in quadruplicate,  
in alternating order of Pd- and Cd-barcoded samples. 
The default pre-wash setting was applied before each 
sample. The number of all collected events per tube  
was approximately 2 x 106 for Pd-barcoded samples and  
1.5 x 106 for Cd-barcoded samples.
Sample carryover test results and summary
The number of Pd-barcoded events carried over to Cd-
barcoded samples was negligible. Fewer than 10 events 

CyTOF XT reduces hands-on instrument time and 
increases sample throughput.
CyTOF XT workflow steps are similar to those for Helios, 
but most are automated. An operator only needs to 
load the bottle tray with required solutions (including 
an improved high-ionic-strength solution, Maxpar 
Cell Acquisition Solution Plus for CyTOF XT, Cat. No. 
201244), ignite and warm up plasma, start the automated 
tuning protocol, load the carousel with samples, select 
acquisition criteria, and walk away while the system 
does the rest (Figure 2A, CyTOF XT). 

The CyTOF XT automatically adds EQ beads, 
resuspends pelleted samples and mixes prior to 
acquisition, performs washes, notifies the operator 
upon successful completion of a batch, normalizes and 
saves files, completes extended cleaning after batch 
acquisition, and shuts down plasma at the end of a 
workday. User attention is needed only for nebulizer 
maintenance cleaning after the instrument shuts 
itself down. The carousel is accessible during batch 
acquisition, allowing an operator to add new samples or 
replace the acquired tubes with a new batch of samples 
for continuous acquisition. Finally, the Autosampler 
carousel is cooled and kept at 4–8 °C, maintaining 
sample integrity for many hours and ensuring high 
quality data. 

In contrast to Helios, the automated sample acquisition 
on CyTOF XT (Figure 2A, orange time bar) frees 
up operator time while instrument automation and 
programming do the work. Acquisition of the 10 assay 
tubes occurs unattended for 7 hr 50 min on the CyTOF 
XT, enabling the operator to perform other activities 
through the day.

CyTOF XT extends the workday with 
walk-away automation.
CyTOF XT provides an opportunity to go beyond the 
8-hour workday with sample acquisition for an overnight
run. Figure 2B illustrates how the Autosampler and
CyTOF Software v8.0 for CyTOF XT enable increased
sample throughput. An additional 12 samples stained
with the Maxpar Direct Immune Profiling Assay plus
a 20-plex barcoded sample may be run unattended
overnight after a standard 8-hour workday on CyTOF XT,
bringing the total number of samples run to 42.

Batch sample acquisition is possible because the 
Autosampler applies stringent washing conditions to 
ensure consistent data collection and reduce sample 
carryover, while detecting and resolving clogs during 
acquisition. Refer to the next sections for more about 
carryover tests and CyTOF XT unclogging capabilities.
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out of all 600,000 Pd+ live events, or <0.01% 
carryover, were observed (Figure 3). The results 
demonstrate that the Autosampler has effective  
washing between samples when default settings 
are used on the CyTOF XT. The automated pre-wash 
settings can be customized for more stringent  
cleaning if required for samples that are anticipated  
to be challenging to maintain in single-cell suspension. 
Following the clog prevention recommendations 
outlined in the next section on challenging sample 
handling will also minimize carryover. 

CyTOF XT is uniquely designed to 
automatically detect and resolve clogs
Clogging can disrupt and delay cytometry instrument 
workflow. Helios and CyTOF XT rely on different 
strategies to manage and unclog the sample fluidics.

Clog management on Helios and CyTOF XT
For challenging samples on the Helios system, a clog 
becomes apparent when the sample flow rate drops 
from 30 µL/min to 0 µL/min. The operator must then 
perform a manual unclogging procedure. 
In contrast to Helios, the CyTOF XT Autosampler 
software detects potential clogs by monitoring whether 
pressure and flow parameters fluctuate beyond set 
thresholds. Upon detecting a blockage, the software 
executes a routine that mimics the manual unclogging 
procedure typically performed by an operator. To 
best demonstrate the improvements made to clog 
management and resolution on CyTOF XT, a dissociated 
tissue sample test was performed. 

Dissociated tissue sample study design for CyTOF XT
Multiple replicates of cells from dissociated mouse 
intestinal tissue were run for several hours on a CyTOF 
XT at the optimized concentration of 0.5 x 106 cells/mL. 
Dissociated cells from solid tissue were chosen because 
this sample type is known to be more difficult to maintain 
as a single-cell suspension. Dissociated mouse tissue 
samples were stained according to Maxpar Cell Surface 
Staining with Fresh Fix Protocol (400276) and prepared 
using validated workflows, which include filtering 
through 35 µm cell strainers before sample acquisition.  
A batch of 12 dissociated mouse intestinal cell samples  
in pelleted format was loaded into the carousel and  
a set volume was acquired. The pressure in the sample 
introduction line was monitored and recorded during 
sample acquisition. Sample pressure logs and data 
quality were analyzed upon completion of the run.

Figure 3. Negligible Pd-barcoded sample carryover observed in 
subsequent Cd-barcoded samples. A set of 8 Pd- and Cd-barcoded 
samples was run in quadruplicate in alternating order to assess the 
carryover of Pd-barcoded cells to the next Cd-barcoded sample. 
Default pre-wash settings were applied. Biaxial plots of 105Pd vs. 114Cd  
show Cd-positive and Pd-positive populations. Samples were gated 
on live singlet cell events identified using the cleanup strategy 
described in Approach to Bivariate Analysis of Data Acquired Using 
the Maxpar Direct Immune Profiling Assay (400248). The percentage 
of Pd-barcoded sample carryover is shown in the adjacent Cd-
barcoded sample.
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Dissociated tissue sample test results and summary
Figure 4A illustrates the pressure changes during the 
acquisition of the mouse intestinal cell samples using 
the default unclogging parameters on CyTOF XT. All 
samples were acquired successfully. As shown in Figure 
4A, Sample 1 triggered the automated unclogging 
routine 4 times while Samples 2 and 3 were acquired 
without interruptions. Note that despite the occurrence 
of multiple clogs during the acquisition, marker signal 
intensity was not affected by the automated unclogging 
protocol as demonstrated by comparing Sample 1 to 

Sample 2 and Sample 3 (Figure 4B). Additionally, only 
approximately 14% of the expected 700,000 events were 
lost due to the 4 clogs in Sample 1 (Figure 4C). More 
important, the automated unclogging routine extended 
the acquisition by only 30 minutes and completed a 
batch of samples without need for manual intervention.
CyTOF XT is uniquely designed to detect and 
automatically resolve clogs. The combination of 
automated features (sample acquisition, unclogging, 
and instrument shutdown), makes CyTOF the most 
productive high-parameter cytometer on the market.

Figure 4. Automated unclogging by CyTOF XT resolves blockages with no impact on data quality. 12 samples (2.5 mL each) were acquired 
automatically with several occurrences of high pressure due to multiple clogs in single samples. A) Pressure monitoring of the 12 samples 
identified 3 consecutive samples with varying unclogging routine experiences. Section I (light blue) denotes washing steps between samples. 
During this time, rapid pressure swings are observed as positive to negative pressure readings, which function to remove the remaining sample  
in the line. Similarly, pressure during the unclogging routine (Section II, light green) fluctuates to effectively remove the clog and enable the 
continuation of the acquisition. A rhythmic pattern (Section III, light orange) in the pressure readings is seen in the acquisition of Sample 2 and 
Sample 3. This pattern is caused by the change in pressure detected between single loops of a sample that are loaded into the Autosampler 
module. The loop accommodates 250 µL of the sample volume and the entire acquisition happens in intervals, hence the rhythmic pressure 
pattern. B) The automatic unclogging routine did not impact signal intensity, as illustrated by the unchanged signal intensity of 2 major 
populations between all 3 samples. C) Summary of collected events and detected clogs. 
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Tips for success
Recommendations to reduce clogging:
Sample preparation. Wash samples with Maxpar CAS 
Plus twice immediately prior to loading the carousel.
Sample filtration. All samples should be filtered 
through appropriately sized cell strainers to prevent 
cell aggregates and large particles from entering the 
fluidics. Best practice is not to force the sample through 
the mesh with a pipette but instead gently pipette the 
sample through the mesh cap. Avoid using a pipette to 
aspirate any remaining sample from the inner side of the 
straining cap. 
Cell concentration. Optimize cell concentration based 
on sample type. Acquire potentially challenging samples 
at 0.5 x 106 cells/mL or less. 
Pre-wash settings. Select a heavy pre-wash cycle for 
challenging samples.
Acquisition volume. Split large volume samples into 
smaller volume acquisitions over multiple tubes. 
Regular instrument maintenance is key. Clean and maintain  
parts and fluidics as per Fluidigm recommendation.  
For more detail, refer to the CyTOF XT User Guide 
(FLDM-00254) and the CyTOF Software v8.0 Help for 
CyTOF XT (FLDM-00045), also available as the  
software integrated help guide.
Detailed recommendations for reducing clogs can also 
be found in the CyTOF Software v8.0 Help for CyTOF XT 
(FLDM-00045).

CyTOF XT delivers optimal data quality 
over extended acquisitions. 
In some cases, a typical workday of 8 hours may not be 
sufficient to fulfill the requirements of the experiment, 
as when running samples for a large study. Previous 
sections demonstrated that the CyTOF XT is uniquely 
designed to accommodate long unattended runs 
and can successfully resolve clogs and avoid sample 
carryover. The following section assesses the CyTOF 
XT detector’s potential to maintain a high level of 
performance during long hours of ion detection.
A new feature of CyTOF XT is the automatic adjustment 
of the detector voltage. This ensures signal stability 
regardless of acquisition time.

Extended acquisition study design 
The goal of this study was to confirm that all marker 
signal intensities were maintained at the same level  
and did not decrease over time due to any loss of 
sensitivity by the CyTOF XT detector. Twelve tubes 
containing various samples were loaded into the 
carousel for long-term unsupervised acquisition.  
To assess the impact of time on data quality, the first  
and last tube of the carousel were loaded with the  
same sample. This sample was prepared by staining 
PBMC with surface and nuclear markers according 
to the Maxpar Nuclear Antigen Staining with Fresh 
Fix Protocol (400277). The time difference between 
acquisition of the sample in Run 1 and Run 12 was 
approximately 19 hours. During this time, the chilled 
carousel maintained the samples in suspension at  
4–8 °C. Test results are presented in Figure 5.

Figure 5. Signal stability over 19 hours of acquisition. 12 tubes of various sample types were continuously collected on CyTOF XT over 19 
hours. Run 1 and Run 12 are replicates of the same sample and were acquired first and last, respectively. Run 12 and Run 1 demonstrated the same 
level of signal. 14 markers are shown as representative data in order of their cell marker signal intensities (low to high). Numbers represent signal 
intensities (median) over the 19-hour period.
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Extended acquisition study results and summary
Fourteen surface markers of low, medium, and high  
expression range were analyzed. The absolute 
difference in median signal intensity for each marker 
was calculated between Run 1 and Run 12. Low 
expression markers with signal intensity <50 dual  
counts (CD38, CD25, CD20, CD127, CD19, CD56) 
showed an average difference of only 4.9%. Medium 
expression markers (≥50 and 200 dual counts: CD11b, 
CD3, HLA-DR, CD4, CD45) exhibited an average 
difference of 1.9%. High expression markers with signal 
of >200 counts (CD8, CD14, DNA) demonstrated a 
negligible average difference of 1.2%. 
This study demonstrates that the automated detector 
voltage optimization of CyTOF XT can sustain a constant 
level of instrument sensitivity during extended runs. 

Comparable data performance on 
Helios and CyTOF XT
Successful completion of extended runs is facilitated 
by CyTOF Software v8.0 for CyTOF XT, which has been 
optimized to improve the experience of acquiring 
samples, data processing, and high-parameter data 
storage. The enhancements include the following:
•  CyTOF XT software automates detector voltage

optimization during acquisition, maintaining
comparable sensitivity throughout extended
acquisitions.

•  The software improves upon the built-in sample
standardization, using EQ Six Element or EQ Four
Element Calibration Beads (Cat. Nos. 201245 and
201078, respectively) to minimize technical variability.
The sample normalization algorithm better identifies
the EQ calibration beads on the fly, delivering ready-
to-analyze data immediately after acquisition.

•  CyTOF XT software records a linear mode data
(LMD) file, which captures all 135 channels for post-
acquisition reprocessing and troubleshooting.
Both unprocessed and normalized flow cytometry
standard (FCS) files are recorded using FCS 3.1
format. The final output files have been optimized for
more efficient use of data storage.

These CyTOF XT software advancements significantly 
enhance data processing and workflows while 
maintaining comparable performance between Helios 
and CyTOF XT. This is illustrated in the section below. 
Study design to compare signal intensities and 
population frequencies on Helios and CyTOF XT
Two independent experiments were performed to 
demonstrate the comparability of data with regards 
to signal intensities and cell population frequencies 
between CyTOF XT and Helios data. Tests were run on 
CyTOF XT and Helios in parallel using a single donor 

PBMC sample in Experiment 1 and a single donor whole 
blood sample in Experiment 2.

Experiment 1: PBMC study design
PBMC from a single donor were stained with the Maxpar 
Direct Immune Profiling Assay and run in triplicate on 
both CyTOF XT and Helios in parallel. PBMC sample 
preparation and acquisition were performed according 
to recommendations in the Maxpar Direct Immune 
Profiling Assay Cell Staining and Data Acquisition User 
Guide (400286), and the Helios User Guide (400250)  
or the CyTOF Software v8.0 Help for CyTOF XT  
(FLDM-00045), also available as the software integrated 
help guide. Data was normalized using the applicable 
CyTOF Software and analyzed with Maxpar Pathsetter™, 
a fully automated data analysis solution for samples 
processed with the Maxpar Direct Immune Profiling 
Assay. Maxpar Pathsetter generates a report with 
frequencies of defined populations and their signal 
intensities. As a comparative analysis, each population 
was gated manually in Cytobank and compared 
between the instruments. The manual gating strategies 
were applied following the technical note: Approach to 
Bivariate Analysis of Data Acquired Using the Maxpar 
Direct Immune Profiling Assay (400248). 

Experiment 2: Whole blood study design 
A test similar to Experiment 1 was performed with whole 
blood stained with the Maxpar Direct Immune Profiling 
Assay and run in triplicate on both CyTOF XT and Helios 
in parallel. Data were normalized and analyzed as 
described in Experiment 1.
Comparison of signal intensity and population 
frequency 
The automated Maxpar Pathsetter analysis compiled 
cell classification data from the triplicate PBMC and 
whole blood datasets acquired on Helios or CyTOF 
XT. The results of 35 cell populations were graphed 
in the upper panel of Figures 6 and 7 for PBMC and 
whole blood samples, respectively. Comparison of 
population frequencies of data files from Helios and 
CyTOF XT automatically analyzed in Maxpar Pathsetter 
demonstrated comparable results for replicate samples 
between the two instruments (Figures 6 and 7, upper 
panels). The percent difference was <3.2% and <17.4% 
for major (>20% of all live events) and minor (<20% 
of all live events) populations, respectively, in both 
experiments (Appendix, Tables S1 and S4). The lower 
panels of Figures 6 and 7 include examples of signal 
intensities for major populations that were manually 
gated. The median intensities of positive populations 
were comparable between Helios and CyTOF XT by 
manual gating (data not shown). 
Using this dataset, an assessment of staining quality for 
each marker on CyTOF XT and Helios was conducted. 
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Maxpar Pathsetter performs a staining assessment using 
a statistical approach called strictly standardized mean 
difference (SSMD or β). SSMD considers the median and 
median absolute deviations of both positive and negative 
populations to assess the resolution of each marker, 
known as a β value. A higher β value indicates a higher 
marker resolution that translates to a better separation 
of positive and negative populations. For the PBMC 
and whole blood tests, the β value demonstrated a 
high level of reproducibility across CyTOF XT and 
Helios data (Appendix, Tables S2 and S6). Furthermore, 
β values for CyTOF XT data generally exceeded those 
of Helios.

Deming regression was also used to statistically 
compare population frequencies, median signal 
intensities, and β values for both PBMC and whole blood 
tests performed on Helios and CyTOF XT (Appendix, 
Figures S1–S4). There was no significant difference 
between these measurements on each instrument 
except in the β values of the whole blood tests, which 
were higher on CyTOF XT. Deming regression analysis 
found statistically higher B values for samples acquired 
on CyTOF XT relative to Helios. (Appendix, Figure S4).
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Figure 6. Comparison of PBMC cell population frequencies and signal intensities between Helios and CyTOF XT 6 replicates of PBMC from 
the same donor were stained with the Maxpar Direct Immune Profiling Assay, pooled together, and split into 6 tubes for acquisition on Helios and 
CyTOF XT, with 300,000 events acquired per sample. Automated population frequency data obtained from Maxpar Pathsetter analysis is  
presented in the bar charts (upper panel). Biaxial plots of major populations (lower panel) are used to compare signal intensity (median) or 
percentage of events as specified in each corresponding plot between Helios and CyTOF XT by manual gating. 
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Figure 7. Comparison of stained whole blood cell population frequencies and signal intensities between Helios and CyTOF XT. 6 replicates 
of whole blood from the same donor were stained with the Maxpar Direct Immune Profiling Assay, pooled together, and split into 6 tubes for 
acquisition on Helios and CyTOF XT, with 400,000 events acquired per sample. Automated population frequency data obtained from Maxpar 
Pathsetter analysis is presented in the bar charts (upper panel). Biaxial plots of major populations (lower panel) are used to compare signal 
intensity (median) and percentage of events as specified in each corresponding plot between Helios and CyTOF XT by manual gating. 
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CyTOF XT can resolve rare populations.
The high-quality data delivered by CyTOF XT enables 
the identification of both abundant and rare populations 
in a sample. An example step-by-step manual gating 
strategy is shown in Figure 8, demonstrating that 2  
replicates of the same sample acquired on both 
instruments reproducibly resolve markers to identify  
a desired cell population. The MAIT/NKT CD4–  
cell population was chosen because it is a rare 
population that comprises only 0.4% of the total live 

cell population in whole blood. As shown in the far-
right biaxial plot with fixed gates in Figure 8, the same 
sample acquired on Helios and CyTOF XT yielded a 
similar number of MAIT/NKT CD4– cells (1,047 and 1,055, 
respectively) out of 400,000 total events collected. 
In this section we showed that comparable performance 
between Helios and CyTOF XT is demonstrated 
through the analysis of signal intensities, cell population 
frequencies, and marker resolution of samples stained 
with a high parameter-marker panel. 
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Figure 8. Manual gating strategy of the rare MAIT/NKT CD4– T cell populations, acquired from the same whole blood sample on both 
Helios and CyTOF XT. An example step-by-step gating strategy for a given rare population after applying the cleanup strategy and gating outlined 
in Approach to Bivariate Analysis of Data Acquired Using the Maxpar Direct Immune Profiling Assay (400248) is presented. All 35 populations can 
be identified both manually and automatically using normalized files from both instruments. As shown in the CD28/CD161  
gate, the total number of MAIT/NKT CD4– T cells is highly comparable between Helios and CyTOF XT.

Summary
CyTOF XT is a new generation of CyTOF instrument that 
shares the same reliable level of performance with its 
predecessor, Helios, but with several key improvements: 
•  The novel Autosampler design and new CyTOF

Software v8.0 for CyTOF XT features automated
sample acquisition, EQ bead addition to samples,
unclogging, normalization, cleaning, and plasma
shutdown. Together, these features improve
workflows to reduce hands-on time without
impacting data quality.

•  Batch acquisition enables up to 13 sample tubes
to be loaded into the chilled carousel of the
Autosampler module, with the added option
to add more samples upon completion of earlier
tubes, for added productivity and flexibility.

•  An onboard bottle tray and a chilled Autosampler
carousel facilitate extended acquisitions.

•  Robust automated pre-wash cycles minimize
sample carryover.

•  Automated detector voltage optimization function
helps to maintain consistent signal intensities over
the course of extended acquisitions.

•  On-the-fly data processing and normalization with
the latest FCS format (version FCS 3.1) provides
faster time to results with smaller file sizes.

Conclusion
Mass cytometry is widely recognized as a technology 
that brings a level of multiplexing, precision, and 
reproducibility to cell analysis not enabled by other 
single-cell platforms. 
CyTOF XT further enhances the capabilities of mass 
cytometry with workflow automation that refines and 
simplifies sample processing and data acquisition. 
This next generation CyTOF instrument offers a 
new level of autonomy and reproducibility through 
streamlined operation, automated system monitoring, 
and easier system maintenance, making CyTOF XT the 
superior choice for high-parameter cytometric analysis 
in clinical and translational research studies.
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Mean, standard deviation (SD), and percent coefficient of variation (%CV) of population frequencies of PBMC samples stained using
the Maxpar Direct Immune Profiling Assay from the same donor prepared in individual assay tubes, pooled together, and split into 2 sets of 
triplicates, 1 triplicate set per instrument

Related documents
Go to fluidigm.com and search for the following related 
documents.
•  Use of CyTOF Technology in Clinical Research Trials

Data Sheet
•  The Benefits of Palladium Barcoding on Data Quality

and Workflow Application Note (FLDM-00012)
•  Enabling Live-Cell Barcoding with Anti-CD45

Antibodies in Suspension Mass Cytometry
Application Note (FLDM-00488)

• CyTOF XT User Guide (FLDM-00254)
• Helios, a CyTOF System User Guide (400250)
•  Maxpar Direct Immune Profiling Assay Cell Staining

and Data Acquisition User Guide (400286)
•  CyTOF Software v8.0 Help for CyTOF XT (FLDM-00045)
•  Approach to Bivariate Analysis of Data Acquired

Using the Maxpar Direct Immune Profiling Assay
Technical Note (400248)

•  Maxpar Cell Surface Staining with Fresh Fix
Protocol (400276)

•  Maxpar Nuclear Antigen Staining with Fresh Fix
Protocol (400277)

Appendix:  
Supplemental material
Data analysis of population frequencies and 
signal intensities
The following section details additional analysis of 
files described in the application note. Two sets of 
tables and figures are provided for live singlet events 
of PBMC and whole blood. Samples were acquired 
in triplicate on both Helios and CyTOF XT. Raw FCS 
data were normalized in CyTOF Software and then 
analyzed in Maxpar Pathsetter for summary statistics 
and calculations of β values. Databases from Maxpar 
Pathsetter were extracted and further analyzed in NCSS 
Statistical Analysis and Graphics software program for 
Deming regression.

Population % live, Helios and CyTOF XT (PBMC samples)
Descriptive statistic

Population % Live Mean SD % CV
1 Lymphocytes 41.58 0.99 2.38
2 CD3 T cells 26.35 0.77 2.92
3 CD8 T cells 5.61 0.42 7.46
4 CD8 naive 0.72 0.10 13.26
5 CD8 central memory 0.50 0.07 14.25
6 CD8 effector memory 2.50 0.12 4.93
7 CD8 terminal effector 1.89 0.19 10.01
8 CD4 T cells 20.09 0.38 1.89
9 CD4 naive 2.23 0.01 0.47
10 CD4 central memory 3.72 0.12 3.11
11 CD4 effector memory 5.12 0.22 4.29
12 CD4 terminal effector 9.02 0.26 2.84
13 γδ T cells 0.42 0.02 3.86
14 MAIT/NKT 0.23 0.02 7.58
15 B cells 5.77 0.25 4.30
16 B naive 4.18 0.23 5.57
17 B memory 1.57 0.02 1.32
18 Plasmablasts 0.03 0.01 38.11
19 Natural killer cells 9.45 0.06 0.68
20 Early natural killer 4.67 0.03 0.70
21 Late natural killer 4.78 0.03 0.67
22 Monocytes 44.72 0.66 1.48
23 Classical monocytes 43.28 0.73 1.69
24 Intermediate monocytes 1.20 0.07 6.11
25 Non-classical monocytes 0.24 0.02 6.70
26 Plasmacytoid dendritic cells 0.21 0.00 1.58
27 Myeloid dendritic cells 1.06 0.03 2.70
28 Granulocytes 4.24 0.10 2.37
29 Neutrophils 0.59 0.06 10.46
30 Basophils 2.46 0.04 1.65
31 Eosinophils 0.05 0.00 8.69
32 Treg 0.43 0.01 2.78
33 Th1-like 0.78 0.00 0.30
34 Th2-like 3.02 0.09 3.03
35 Th17-like 0.35 0.04 11.94

Population % Live Mean SD % CV
1 Lymphocytes 41.33 0.18 0.44
2 CD3 T cells 26.31 0.28 1.08
3 CD8 T cells 5.74 0.03 0.47
4 CD8 naive 0.74 0.02 2.66
5 CD8 central memory 0.44 0.04 8.62
6 CD8 effector memory 2.55 0.02 0.73
7 CD8 terminal effector 2.01 0.05 2.65
8 CD4 T cells 20.03 0.15 0.74
9 CD4 naive 2.27 0.06 2.54
10 CD4 central memory 3.76 0.15 4.01
11 CD4 effector memory 4.99 0.25 5.03
12 CD4 terminal effector 9.01 0.11 1.20
13 γδ T cells 0.35 0.12 34.37
14 MAIT/NKT 0.19 0.00 0.20
15 B cells 5.79 0.05 0.87
16 B naive 4.17 0.06 1.33
17 B memory 1.59 0.04 2.47
18 Plasmablasts 0.03 0.00 11.57
19 Natural klller cells 9.23 0.15 1.64
20 Early natural killer 4.50 0.04 0.91
21 Late natural killer 4.73 0.12 2.46
22 Monocytes 43.52 0.35 0.80
23 Classical monocytes 42.04 0.32 0.76
24 Intermediate monocytes 1.26 0.04 3.03
25 Non-classical monocytes 0.22 0.01 6.06
26 Plasmacytoid dendritic cells 0.21 0.02 11.34
27 Myeloid dendritic cells 1.04 0.04 3.95
28 Granulocytes 4.48 0.12 2.64
29 Neutrophils 0.73 0.04 5.94
30 Basophils 2.50 0.03 1.36
31 Eosinophils 0.06 0.01 16.86
32 Treg 0.41 0.02 4.39
33 Th1-like 0.86 0.01 1.71
34 Th2-like 3.02 0.03 0.88
35 Th17-like 0.37 0.04 10.39

Helios CyTOF XT 

Table S1. Descriptive statistics of population frequencies as percentage of total live singlet cells for 1 triplicate from Helios and CyTOF XT
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Population % live, Helios and CyTOF XT 
(PBMC samples)
Deming regression

% of All Live Helios
Replicate 1

Helios 
Replicate 2

Helios 
Replicate 3

CyTOF XT 
Replicate 1

CyTOF XT 
Replicate 2

CyTOF XT 
Replicate 3

Lymphocytes 41.97 40.45 42.31 41.41 41.12 41.46
CD3 T cells 26.71 25.47 26.88 26.24 26.06 26.62
CD8 T cells 5.85 5.12 5.85 5.75 5.71 5.75
CD8 naive 0.82 0.63 0.73 0.72 0.76 0.73
CD8 central memory 0.59 0.45 0.48 0.42 0.41 0.48
CD8 effector memory 2.49 2.38 2.62 2.54 2.57 2.55
CD8 terminal effector 1.96 1.67 2.03 2.07 1.97 2.00
CD4 T cells 20.19 19.67 20.41 19.95 19.94 20.20
CD4 naive 2.23 2.22 2.24 2.31 2.20 2.30
CD4 central memory 3.76 3.81 3.59 3.87 3.81 3.59
CD4 effector memory 5.18 4.87 5.30 4.88 4.82 5.28
CD4 terminal effector 9.01 8.76 9.27 8.89 9.10 9.04
γδ T cells 0.43 0.43 0.40 0.35 0.23 0.47
MAIT/NKT 0.24 0.24 0.21 0.19 0.19 0.19
B cells 5.88 5.49 5.95 5.84 5.74 5.78
B naive 4.31 3.91 4.32 4.19 4.10 4.20
B memory 1.55 1.56 1.59 1.61 1.61 1.54
Plasmablasts 0.02 0.02 0.04 0.04 0.03 0.04
Natural killer cells 9.38 9.49 9.48 9.32 9.32 9.06
Early natural killer 4.63 4.69 4.69 4.54 4.51 4.46
Late natural killer 4.74 4.80 4.80 4.78 4.81 4.60
Monocytes 44.23 45.48 44.46 43.47 43.90 43.20
Classical monocytes 42.71 44.11 43.03 42.02 42.37 41.73
Intermediate mono 1.27 1.12 1.21 1.25 1.31 1.24
Non-classical mono 0.25 0.25 0.22 0.21 0.22 0.23
Plasmacytoid dendritic 0.20 0.20 0.21 0.23 0.22 0.18
Myeloid dendritic 1.05 1.05 1.10 1.07 1.06 1.00
Granulocytes 4.33 4.26 4.13 4.49 4.36 4.60
Neutrophils 0.63 0.52 0.62 0.78 0.73 0.69
Basophils 2.49 2.49 2.42 2.51 2.54 2.47
Eosinophils 0.05 0.06 0.05 0.05 0.07 0.05
Treg 0.43 0.41 0.44 0.40 0.44 0.40
Th1-like 0.78 0.78 0.77 0.85 0.88 0.86
Th2-like 3.10 2.92 3.03 3.01 3.01 3.05
Th17-like 0.30 0.37 0.38 0.33 0.39 0.40
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CyTOF XT

Population % live, Helios and CyTOF XT 
(PBMC samples)
Deming regression

% of All Live Helios
Replicate 1

Helios
Replicate 2

Helios
Replicate 3

CyTOF XT
Replicate 1

CyTOF XT
Replicate 2

CyTOF XT
Replicate 3

Lymphocytes 41.97 40.45 42.31 41.41 41.12 41.46
CD3 T cells 26.71 25.47 26.88 26.24 26.06 26.62
CD8 T cells 5.85 5.12 5.85 5.75 5.71 5.75
CD8 naive 0.82 0.63 0.73 0.72 0.76 0.73
CD8 central memory 0.59 0.45 0.48 0.42 0.41 0.48
CD8 effector memory 2.49 2.38 2.62 2.54 2.57 2.55
CD8 terminal effector 1.96 1.67 2.03 2.07 1.97 2.00
CD4 T cells 20.19 19.67 20.41 19.95 19.94 20.20
CD4 naive 2.23 2.22 2.24 2.31 2.20 2.30
CD4 central memory 3.76 3.81 3.59 3.87 3.81 3.59
CD4 effector memory 5.18 4.87 5.30 4.88 4.82 5.28
CD4 terminal effector 9.01 8.76 9.27 8.89 9.10 9.04
γδ T cells 0.43 0.43 0.40 0.35 0.23 0.47
MAIT/NKT 0.24 0.24 0.21 0.19 0.19 0.19
B cells 5.88 5.49 5.95 5.84 5.74 5.78
B naive 4.31 3.91 4.32 4.19 4.10 4.20
B memory 1.55 1.56 1.59 1.61 1.61 1.54
Plasmablasts 0.02 0.02 0.04 0.04 0.03 0.04
Natural killer cells 9.38 9.49 9.48 9.32 9.32 9.06
Early natural killer 4.63 4.69 4.69 4.54 4.51 4.46
Late natural killer 4.74 4.80 4.80 4.78 4.81 4.60
Monocytes 44.23 45.48 44.46 43.47 43.90 43.20
Classical monocytes 42.71 44.11 43.03 42.02 42.37 41.73
Intermediate mono 1.27 1.12 1.21 1.25 1.31 1.24
Non-classical mono 0.25 0.25 0.22 0.21 0.22 0.23
Plasmacytoid dendritic 0.20 0.20 0.21 0.23 0.22 0.18
Myeloid dendritic 1.05 1.05 1.10 1.07 1.06 1.00
Granulocytes 4.33 4.26 4.13 4.49 4.36 4.60
Neutrophils 0.63 0.52 0.62 0.78 0.73 0.69
Basophils 2.49 2.49 2.42 2.51 2.54 2.47
Eosinophils 0.05 0.06 0.05 0.05 0.07 0.05
Treg 0.43 0.41 0.44 0.40 0.44 0.40
Th1-like 0.78 0.78 0.77 0.85 0.88 0.86
Th2-like 3.10 2.92 3.03 3.01 3.01 3.05
Th17-like 0.30 0.37 0.38 0.33 0.39 0.40
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CyTOF XT

Population frequencies for each PBMC replicate stained with the Maxpar Direct Immune Profiling Assay from the same donor prepared in 
individual assay tubes, pooled together, and split into 2 sets of triplicates, 1 triplicate set per instrument

Table S2. Raw values of population frequencies as percentage of total 
live singlet cells for 2 sets of triplicates from Helios and CyTOF XT. The 
numbers were extracted from Maxpar Pathsetter analysis results.

Figure S1. Deming regression of population frequencies between the 
2 sets of triplicate data from Table S2. Null hypothesis is accepted at a  
significance level of 0.05, indicating high similarity between the 2 datasets.

Helios 
Replicate 1

Helios 
Replicate 2

Helios 
Replicate 3

CyTOF XT 
Replicate 1

CyTOF XT 
Replicate 2

CyTOF XT 
Replicate 3

CD38 4.15 4.45 4.23 3.63 3.52 3.42

CD14 5.39 5.41 5.80 5.29 5.55 5.35

CD19 4.17 4.33 4.27 4.42 4.51 4.39

CD3 4.35 4.43 4.40 4.39 4.49 4.57

CD45RA 2.57 2.43 2.57 2.26 2.68 2.35

CXCR3 0.52 0.53 0.52 0.46 0.49 0.48

CXCR5 1.04 1.02 1.03 1.02 1.03 1.03

CCR4 1.48 1.72 2.04 1.37 1.75 2.40

TCRgd 1.83 1.91 2.21 2.49 2.77 1.76

CD28 3.51 3.52 3.22 3.58 3.38 3.35

CD127 2.97 2.94 2.98 2.89 3.03 2.97

CD56 3.54 3.62 3.56 3.71 3.76 3.68

CD161 3.09 3.09 3.85 3.94 3.70 4.16

CD8 3.27 3.52 3.25 3.13 3.20 3.12

CD4 5.38 5.48 5.36 5.51 5.56 5.55

CCR7 2.41 2.83 2.84 2.72 2.82 2.86

CD25 2.66 2.55 2.57 2.82 2.65 2.68

HLADR 3.15 3.10 3.14 3.33 3.22 3.16

CD20 3.16 3.23 3.14 3.38 3.35 3.17

IgD 2.71 2.80 2.63 2.84 2.83 2.80

CD57 2.84 2.80 2.92 2.81 2.83 2.69

CD66b 3.70 3.61 3.62 3.85 3.78 3.39

CD123 4.01 3.94 4.04 3.97 3.98 4.00

CD11c 6.66 6.98 6.73 7.31 7.00 6.87

CD27 2.61 2.91 2.80 2.91 2.93 2.95

CD45 1.63 1.93 2.08 1.80 1.66 1.92

CCR6 1.65 1.63 1.63 1.63 1.61 1.57

CD294 3.82 3.70 3.78 3.08 2.93 2.75

CD16 1.83 1.79 1.86 1.75 1.85 1.74

CD45RO 1.57 1.54 1.64 1.41 1.58 1.47

H
el

io
s

CyTOF XT

Helios 
Replicate 1

Helios 
Replicate 2

Helios 
Replicate 3

CyTOF XT
Replicate 1

CyTOF XT
Replicate 2

CyTOF XT
Replicate 3

CD38 4.15 4.45 4.23 3.63 3.52 3.42

CD14 5.39 5.41 5.80 5.29 5.55 5.35

CD19 4.17 4.33 4.27 4.42 4.51 4.39

CD3 4.35 4.43 4.40 4.39 4.49 4.57

CD45RA 2.57 2.43 2.57 2.26 2.68 2.35

CXCR3 0.52 0.53 0.52 0.46 0.49 0.48

CXCR5 1.04 1.02 1.03 1.02 1.03 1.03

CCR4 1.48 1.72 2.04 1.37 1.75 2.40

TCRgd 1.83 1.91 2.21 2.49 2.77 1.76

CD28 3.51 3.52 3.22 3.58 3.38 3.35

CD127 2.97 2.94 2.98 2.89 3.03 2.97

CD56 3.54 3.62 3.56 3.71 3.76 3.68

CD161 3.09 3.09 3.85 3.94 3.70 4.16

CD8 3.27 3.52 3.25 3.13 3.20 3.12

CD4 5.38 5.48 5.36 5.51 5.56 5.55

CCR7 2.41 2.83 2.84 2.72 2.82 2.86

CD25 2.66 2.55 2.57 2.82 2.65 2.68

HLADR 3.15 3.10 3.14 3.33 3.22 3.16

CD20 3.16 3.23 3.14 3.38 3.35 3.17

IgD 2.71 2.80 2.63 2.84 2.83 2.80

CD57 2.84 2.80 2.92 2.81 2.83 2.69

CD66b 3.70 3.61 3.62 3.85 3.78 3.39

CD123 4.01 3.94 4.04 3.97 3.98 4.00

CD11c 6.66 6.98 6.73 7.31 7.00 6.87

CD27 2.61 2.91 2.80 2.91 2.93 2.95

CD45 1.63 1.93 2.08 1.80 1.66 1.92

CCR6 1.65 1.63 1.63 1.63 1.61 1.57

CD294 3.82 3.70 3.78 3.08 2.93 2.75

CD16 1.83 1.79 1.86 1.75 1.85 1.74

CD45RO 1.57 1.54 1.64 1.41 1.58 1.47
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CyTOF XT

Beta values of marker intensities of each PBMC replicate stained with Maxpar Direct Immune Profiling Assay from the same donor on 
both instruments

Figure S2. Deming regression of β values of marker intensities from 
Table S3. Null hypothesis is accepted at a significance level of 0.05, 
indicating high similarity between the 2 datasets.

Table S3. Beta (β) values of marker intensities of each replicate from 
Helios and CyTOF XT. The numbers were extracted from Maxpar 
Pathsetter analysis results. 
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Population % live, Helios and
CyTOF XT (whole blood samples)
Descriptive statistic

Helios CyTOF XT 
Population % Live Mean SD % CV

1 Lymphocytes 33.34 0.57 1.71
2 CD3 T cells 23.84 0.47 1.96
3 CD8 T cells 7.73 0.12 1.56
4 CD8 naive 3.67 0.07 1.83
5 CD8 central memory 0.73 0.02 3.22
6 CD8 effector memory 1.68 0.05 2.89
7 CD8 terminal effector 1.65 0.04 2.34
8 CD4 T cells 15.02 0.32 2.12
9 CD4 naive 4.24 0.14 3.36
10 CD4 central memory 6.34 0.24 3.72
11 CD4 effector memory 3.23 0.27 8.40
12 CD4 terminal effector 1.20 0.02 1.69
13 γδ T cells 0.68 0.03 3.94
14 MAIT/NKT 0.42 0.01 2.17
15 B cells 5.97 0.16 2.62
16 B naive 4.56 0.13 2.82
17 B memory 1.37 0.04 2.66
18 Plasmablasts 0.04 0.01 15.40
19 Natural killer cells 3.53 0.10 2.97
20 Early natural killer 1.77 0.04 2.49
21 Late natural killer 1.76 0.06 3.47
22 Monocytes 6.35 0.16 2.59
23 Classical monocytes 4.79 0.10 1.99

24 Intermediate monocytes 0.53 0.02 4.55
25 Non-classical monocytes 1.04 0.05 4.72
26 Plasmacytoid dendritic cells 0.10 0.00 2.46
27 Myeloid dendritic cells 0.24 0.01 5.81
28 Granulocytes 52.39 0.83 1.59
29 Neutrophils 48.19 0.76 1.57
30 Basophils 0.61 0.02 3.40
31 Eosinophils 2.86 0.11 3.84
32 Treg 0.62 0.03 5.20
33 Th1-like 0.94 0.03 3.38
34 Th2-like 1.03 0.05 4.90
35 Th17-like 1.34 0.02 1.68

Population % Live Mean SD % CV
1 Lymphocytes 33.44 1.07 3.20
2 CD3 T cells 23.84 0.87 3.65
3 CD8 T cells 7.72 0.27 3.47
4 CD8 naive 3.76 0.14 3.77
5 CD8 central memory 0.81 0.07 8.14
6 CD8 effector memory 1.58 0.04 2.71
7 CD8 terminal effector 1.57 0.03 1.76
8 CD4 T cells 15.03 0.56 3.75
9 CD4 naive 4.20 0.17 4.10
10 CD4 central memory 6.78 0.34 4.98
11 CD4 effector memory 2.93 0.03 0.90
12 CD4 terminal effector 1.12 0.11 9.72
13 γδ T cells 0.68 0.02 2.74
14 MAIT/NKT 0.41 0.03 6.16
15 B cells 6.16 0.04 0.69
16 B naive 4.63 0.02 0.48
17 B memory 1.49 0.04 2.57
18 Plasmablasts 0.04 0.00 9.51
19 Natural killer cells 3.45 0.19 5.48
20 Early natural killer 1.72 0.12 6.80
21 Late natural killer 1.73 0.07 4.28
22 Monocytes 6.52 0.20 3.09
23 Classical monocytes 5.03 0.10 2.04
24 Intermediate monocytes 0.47 0.04 8.89
25 Non-classical monocytes 1.02 0.06 5.80
26 Plasmacytoid dendritic cells 0.09 0.00 5.04
27 Myeloid dendritic cells 0.25 0.02 8.88
28 Granulocytes 51.95 1.42 2.73
29 Neutrophils 48.04 1.18 2.46
30 Basophils 0.63 0.02 3.79
31 Eosinophils 2.46 0.22 8.98
32 Treg 0.57 0.02 4.20
33 Th1-like 0.86 0.06 7.12
34 Th2-like 1.04 0.03 2.98
35 Th17-like 1.39 0.06 4.22

Mean, SD, and %CV of population frequencies of whole blood samples stained with the Maxpar Direct Immune Profiling Assay from the 
same donor prepared in individual assay tubes, pooled together, and split into 2 sets of triplicates, 1 triplicate set per instrument

Tables S4. Descriptive statistics of population frequencies as percentage of total live singlet cells for triplicate sample data from Helios and CyTOF XT
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Helios 
Replicate 1

Helios 
Replicate 2

Helios 
Replicate 3

CyTOF XT 
Replicate 1

CyTOF XT 
Replicate 2

CyTOF XT 
Replicate  3

Lymphocytes 32.90 33.98 33.13 34.66 33.01 32.66
CD3 T cells 23.53 24.37 23.61 24.81 23.57 23.13
CD8 T cells 7.63 7.86 7.69 8.00 7.69 7.47
CD8 naive 3.63 3.74 3.63 3.89 3.78 3.61
CD8 central memory 0.71 0.75 0.74 0.89 0.77 0.78
CD8 effector memory 1.69 1.73 1.63 1.62 1.58 1.53
CD8 TE 1.61 1.64 1.69 1.60 1.56 1.54
CD4 T cells 14.80 15.38 14.86 15.67 14.80 14.61
CD4 naive 4.31 4.34 4.08 4.32 4.27 4.00
CD4 central memory 6.13 6.30 6.59 7.16 6.62 6.55
CD4 effector memory 3.18 3.52 2.99 2.95 2.90 2.95
CD4 terminal effector 1.18 1.23 1.20 1.23 1.01 1.12
γδ T cells 0.68 0.70 0.65 0.70 0.68 0.67
MAIT/NKT 0.41 0.43 0.41 0.44 0.40 0.40
B cells 5.80 6.00 6.11 6.19 6.11 6.18
B naive 4.41 4.59 4.66 4.66 4.63 4.61
B memory 1.35 1.36 1.42 1.49 1.45 1.53
Plasmablasts 0.04 0.05 0.03 0.04 0.03 0.04
Natural killer cells 3.57 3.61 3.41 3.67 3.34 3.34
Early natural killer 1.79 1.80 1.72 1.86 1.64 1.67
Late natural killer 1.78 1.81 1.69 1.81 1.70 1.67
Monocytes 6.41 6.48 6.17 6.74 6.46 6.35
Classical monocytes 4.81 4.88 4.69 5.15 4.99 4.96
Intermediate mono 0.54 0.54 0.50 0.51 0.46 0.43
Non-classical mono 1.07 1.06 0.98 1.08 1.02 0.96
Plasmacytoid dendritic 0.10 0.10 0.10 0.10 0.09 0.09
Myeloid dendritic 0.24 0.25 0.22 0.28 0.23 0.25
Granulocytes 52.88 51.42 52.86 50.32 52.64 52.90
Neutrophils 48.71 47.32 48.54 46.69 48.60 48.84
Basophils 0.59 0.63 0.61 0.65 0.61 0.61
Eosinophils 2.82 2.78 2.99 2.21 2.60 2.58
Treg 0.59 0.65 0.63 0.59 0.56 0.55
Th1-like 0.95 0.96 0.90 0.92 0.86 0.79
Th2-like 1.02 1.09 0.99 1.08 1.04 1.02
Th17-like 1.32 1.37 1.35 1.45 1.33 1.40
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CyTOF XT

Helios
Replicate 1

Helios
Replicate 2

Helios
Replicate 3

CyTOF XT
Replicate 1

CyTOF XT
Replicate 2

CyTOF XT
Replicate  3

Lymphocytes 32.90 33.98 33.13 34.66 33.01 32.66
CD3 T cells 23.53 24.37 23.61 24.81 23.57 23.13
CD8 T cells 7.63 7.86 7.69 8.00 7.69 7.47
CD8 naive 3.63 3.74 3.63 3.89 3.78 3.61
CD8 central memory 0.71 0.75 0.74 0.89 0.77 0.78
CD8 effector memory 1.69 1.73 1.63 1.62 1.58 1.53
CD8 TE 1.61 1.64 1.69 1.60 1.56 1.54
CD4 T cells 14.80 15.38 14.86 15.67 14.80 14.61
CD4 naive 4.31 4.34 4.08 4.32 4.27 4.00
CD4 central memory 6.13 6.30 6.59 7.16 6.62 6.55
CD4 effector memory 3.18 3.52 2.99 2.95 2.90 2.95
CD4 terminal effector 1.18 1.23 1.20 1.23 1.01 1.12
γδ T cells 0.68 0.70 0.65 0.70 0.68 0.67
MAIT/NKT 0.41 0.43 0.41 0.44 0.40 0.40
B cells 5.80 6.00 6.11 6.19 6.11 6.18
B naive 4.41 4.59 4.66 4.66 4.63 4.61
B memory 1.35 1.36 1.42 1.49 1.45 1.53
Plasmablasts 0.04 0.05 0.03 0.04 0.03 0.04
Natural killer cells 3.57 3.61 3.41 3.67 3.34 3.34
Early natural killer 1.79 1.80 1.72 1.86 1.64 1.67
Late natural killer 1.78 1.81 1.69 1.81 1.70 1.67
Monocytes 6.41 6.48 6.17 6.74 6.46 6.35
Classical monocytes 4.81 4.88 4.69 5.15 4.99 4.96
Intermediate mono 0.54 0.54 0.50 0.51 0.46 0.43
Non-classical mono 1.07 1.06 0.98 1.08 1.02 0.96
Plasmacytoid dendritic 0.10 0.10 0.10 0.10 0.09 0.09
Myeloid dendritic 0.24 0.25 0.22 0.28 0.23 0.25
Granulocytes 52.88 51.42 52.86 50.32 52.64 52.90
Neutrophils 48.71 47.32 48.54 46.69 48.60 48.84
Basophils 0.59 0.63 0.61 0.65 0.61 0.61
Eosinophils 2.82 2.78 2.99 2.21 2.60 2.58
Treg 0.59 0.65 0.63 0.59 0.56 0.55
Th1-like 0.95 0.96 0.90 0.92 0.86 0.79
Th2-like 1.02 1.09 0.99 1.08 1.04 1.02
Th17-like 1.32 1.37 1.35 1.45 1.33 1.40
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CyTOF XT

Population frequencies of each whole blood sample stained with the Maxpar Direct Immune Profiling Assay from the same donor prepared in 
individual assay tubes, pooled together, and split into 2 sets of triplicates, 1 triplicate set per instrument

Table S5. Raw values of population frequencies as percentage of 
total live singlet cells of 2 sets of triplicates from Helios and CyTOF XT. 
The numbers were extracted from Maxpar Pathsetter analysis results. 

Figure S3. Deming regression of population frequencies between 
2 sets of triplicates from Table S5. Null hypothesis is accepted at a 
significance level of 0.05, indicating high similarity between the  
2 datasets.
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Helios 
Replicate 1

Helios 
Replicate 2

Helios 
Replicate 3

CyTOF 
Replicate 1

CyTOF 
Replicate 2

CyTOF 
Replicate 3

CD38 4.28 4.26 4.25 4.55 4.32 4.49
CD14 3.15 3.10 3.14 3.83 3.61 3.80
CD19 6.06 5.96 6.11 6.91 6.80 6.82
CD3 7.38 7.11 7.12 7.00 7.01 7.23
CD45RA 2.57 2.59 2.72 3.08 2.78 3.12
CXCR3 0.71 0.71 0.71 0.72 0.72 0.71
CXCR5 7.14 7.18 7.25 7.43 7.41 7.50
CCR4 2.29 2.26 2.57 2.65 2.51 2.68
TCRgd 5.04 4.88 4.79 4.89 4.95 4.83
CD28 5.07 4.76 4.92 5.20 5.29 5.42
CD127 2.58 2.59 2.51 2.55 2.50 2.60
CD56 5.00 4.92 4.88 5.13 5.16 5.06
CD161 3.68 3.91 3.74 3.71 3.83 3.79
CD8 6.78 6.69 6.64 7.44 7.33 7.40
CD4 6.91 6.69 6.62 7.80 7.30 7.61
CCR7 4.78 4.71 4.61 4.41 4.44 4.70
CD25 2.19 2.15 2.25 2.39 2.36 2.35
HLADR 4.54 4.52 4.46 4.71 4.78 4.81
CD20 7.11 6.89 6.71 7.35 7.32 7.30
IgD 4.85 4.65 4.68 4.61 4.67 4.70
CD57 2.65 2.60 2.77 2.64 2.56 2.66
CD66b 5.57 5.48 5.42 5.73 5.56 5.70
CD123 4.56 4.60 4.77 4.45 5.40 4.50
CD11c 4.20 4.92 5.08 4.23 5.05 4.63
CD27 3.93 3.98 3.70 3.90 3.87 3.94
CD45 3.82 3.81 3.80 4.26 4.15 4.30
CCR6 4.36 4.32 4.41 4.82 4.70 4.85
CD294 4.21 4.14 4.16 4.58 4.44 4.48
CD16 3.20 3.14 3.10 3.31 3.16 3.34
CD45RO 3.19 3.13 3.21 3.59 3.53 3.49
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CyTOF XT

Helios 
Replicate 1

Helios 
Replicate 2

Helios 
Replicate 3

CyTOF 
Replicate 1

CyTOF 
Replicate 2

CyTOF 
Replicate 3

CD38 4.28 4.26 4.25 4.55 4.32 4.49
CD14 3.15 3.10 3.14 3.83 3.61 3.80
CD19 6.06 5.96 6.11 6.91 6.80 6.82
CD3 7.38 7.11 7.12 7.00 7.01 7.23
CD45RA 2.57 2.59 2.72 3.08 2.78 3.12
CXCR3 0.71 0.71 0.71 0.72 0.72 0.71
CXCR5 7.14 7.18 7.25 7.43 7.41 7.50
CCR4 2.29 2.26 2.57 2.65 2.51 2.68
TCRgd 5.04 4.88 4.79 4.89 4.95 4.83
CD28 5.07 4.76 4.92 5.20 5.29 5.42
CD127 2.58 2.59 2.51 2.55 2.50 2.60
CD56 5.00 4.92 4.88 5.13 5.16 5.06
CD161 3.68 3.91 3.74 3.71 3.83 3.79
CD8 6.78 6.69 6.64 7.44 7.33 7.40
CD4 6.91 6.69 6.62 7.80 7.30 7.61
CCR7 4.78 4.71 4.61 4.41 4.44 4.70
CD25 2.19 2.15 2.25 2.39 2.36 2.35
HLADR 4.54 4.52 4.46 4.71 4.78 4.81
CD20 7.11 6.89 6.71 7.35 7.32 7.30
IgD 4.85 4.65 4.68 4.61 4.67 4.70
CD57 2.65 2.60 2.77 2.64 2.56 2.66
CD66b 5.57 5.48 5.42 5.73 5.56 5.70
CD123 4.56 4.60 4.77 4.45 5.40 4.50
CD11c 4.20 4.92 5.08 4.23 5.05 4.63
CD27 3.93 3.98 3.70 3.90 3.87 3.94
CD45 3.82 3.81 3.80 4.26 4.15 4.30
CCR6 4.36 4.32 4.41 4.82 4.70 4.85
CD294 4.21 4.14 4.16 4.58 4.44 4.48
CD16 3.20 3.14 3.10 3.31 3.16 3.34
CD45RO 3.19 3.13 3.21 3.59 3.53 3.49

H
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s

CyTOF XT

Beta values of marker intensities of each whole blood sample stained with the Maxpar Direct Immune Profiling Assay from the same donor 
on both instruments

Table S6. Beta (β) values of marker intensities of each replicate from 
Helios and CyTOF XT. The numbers were extracted from Maxpar 
Pathsetter analysis results. 

Figure S4. Deming regression of β values of marker intensities from 
Table S6. Alternative hypothesis is accepted at a significance level 
of 0.05 because the β values from CyTOF XT are higher than from 
Helios, indicating better marker resolution. This translates to a better 
separation of negative and positive populations.

	 78	



SALES
North America | +1 650 266 6170 | info-us@fluidigm.com
Europe/EMEA | +33 1 60 92 42 40 | info-europe@fluidigm.com
Latin America | +1 650 266 6170 | info-latinamerica@fluidigm.com
Japan | +81 3 3662 2150 | info-japan@fluidigm.com
China (excluding Hong Kong) | +86 21 3255 8368 | info-china@fluidigm.com
All other Asian countries | +1 650 266 6170 | info-asia@fluidigm.com

CORPORATE HEADQUARTERS
2 Tower Place, Suite 2000
South San Francisco, CA 94080 USA
Toll-free: 866 359 4354 in the US and Canada
Fax: 650 871 7152
fluidigm.com

For Research Use Only. Not for use in diagnostic procedures.

Information in this publication is subject to change without notice. Patent and License Information: fluidigm.com/legal/notices. Limited Use Label License: The purchase of 
this Fluidigm Instrument and/or Consumable product conveys to the purchaser the limited, nontransferable right to use with only Fluidigm Consumables and/or Instruments 
respectively except as approved in writing by Fluidigm. Trademarks: Fluidigm, the Fluidigm logo, the CyTOF XT logo, Cell-ID, CyTOF, CyTOF XT, Direct, EQ, Helios, Immune 
Profiling Assay, Maxpar and Pathsetter are trademarks and/or registered trademarks of Fluidigm Corporation in the United States and/or other countries. All other trademarks  
are the sole property of their respective owners. ©2021 Fluidigm Corporation. All rights reserved. 05/2021

FLDM-00462 Rev 01 

Learn more at fluidigm.com/cytof.xt
Or contact: tech.support@fluidigm.com

		  79

mailto:info-us@fluidigm.com
mailto:info-europe@fluidigm.com
mailto:info-latinamerica@fluidigm.com
mailto:info-japan@fluidigm.com
mailto:info-china@fluidigm.com
mailto:info-asia@fluidigm.com
mailto:tech.support@fluidigm.com


OR I G I N A L A R T I C L E

Multi-site reproducibility of a human immunophenotyping
assay in whole blood and peripheral blood mononuclear cells
preparations using CyTOF technology coupled with Maxpar
Pathsetter, an automated data analysis system

Charles Bruce Bagwell1 | Benjamin Hunsberger1 | Beth Hill1 | Donald Herbert1 |

Christopher Bray1 | Thirumahal Selvanantham2 | Stephen Li2 | Jose C. Villasboas3 |

Kevin Pavelko3 | Michael Strausbauch3 | Adeeb Rahman4 | Gregory Kelly4 |

Shahab Asgharzadeh5 | Azucena Gomez-Cabrero5 | Gregory Behbehani6 |

Hsiaochi Chang6 | Justin Lyberger6 | Ruth Montgomery7 | Yujiao Zhao7 |

Margaret Inokuma1 | Ofir Goldberger8 | Greg Stelzer8

1Verity Software House, Topsham, Maine

2Fluidigm Canada Inc., Markham, Ontario,

Canada

3Mayo Clinic, Immune Monitoring Core,

Rochester, MN

4Icahn School of Medicine at Mount Sinai,

New York, New York

5Children's Hospital Los Angeles, Los Angeles,

California

6Ohio State University, Columbus, Ohio

7Yale School of Medicine, New Haven,

Connecticut

8Fluidigm Corporation, San Francisco,

California

Correspondence

C. Bruce Bagwell, PO Box 247, Topsham, ME

04086.

Email: cbb@vsh.com

Abstract

High-dimensional mass cytometry data potentially enable a comprehensive charac-

terization of immune cells. In order to positively affect clinical trials and translational

clinical research, this advanced technology needs to demonstrate a high reproducibil-

ity of results across multiple sites for both peripheral blood mononuclear cells

(PBMC) and whole blood preparations. A dry 30-marker broad immunophenotyping

panel and customized automated analysis software were recently engineered and are

commercially available as the Fluidigm® Maxpar® Direct™ Immune Profiling Assay™.

In this study, seven sites received whole blood and six sites received PBMC samples

from single donors over a 2-week interval. Each site labeled replicate samples and

acquired data on Helios™ instruments using an assay-specific acquisition template.

All acquired sample files were then automatically analyzed by Maxpar Pathsetter™

software. A cleanup step eliminated debris, dead cells, aggregates, and normalization

beads. The second step automatically enumerated 37 immune cell populations and

performed label intensity assessments on all 30 markers. The inter-site reproducibil-

ity of the 37 quantified cell populations had consistent population frequencies, with

an average %CV of 14.4% for whole blood and 17.7% for PBMC. The dry reagent

coupled with automated data analysis is not only convenient but also provides a high

degree of reproducibility within and among multiple test sites resulting in a compre-

hensive yet practical solution for deep immune phenotyping.
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cytometry automation, cytometry standardization, kits, percentage precision
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1 | INTRODUCTION

Multi-site studies have been successfully performed in flow cyto-

metry, but only a few multi-site mass cytometry studies have been

reported (Blazkova et al., 2017; Leipold et al., 2018) and no mass

cytometry-based study has examined the reproducibility of whole

blood preparations or dry antibody panels. In mass cytometry, the use

of an inductively coupled plasma mass spectrometer to detect heavy

metal-tagged probes on a single-cell basis mitigates the issue of spec-

tral overlap between detection channels, easily allowing for the use of

>40 simultaneous measurements.

Peripheral blood mononuclear cell (PBMC) preparations have use-

ful storage characteristics, which is helpful for doing multi-site studies.

However, immunophenotyping of whole blood specimens is an

industry-standard for clinical trials and other types of clinical studies.

The ability to standardize both PBMC and whole blood immuno-

phenotyping worldwide would have far-reaching ramifications. In a

typical flow cytometry experiment workflow, several areas of variabil-

ity have been identified. Controlling such factors as reagents, sample

handling, instrument setup, and data analysis can lead to standardiza-

tion (Maecker, McCoy, & Nussenblatt, 2012).

This study is part of an initiative to produce a commercially avail-

able product that addresses many of the factors important in develop-

ing a standardized immune monitoring assay for mass cytometry. The

system consists of a dry antibody product capable of identifying many

important immune populations, an instrument setup template, and

automated cleanup and analysis software that enumerates a broad

spectrum of immune cell types. The core of the panel is based on the

recommendation of the Human ImmunoPhenotyping Consortium of

the Human Immunology Project (Finak et al., 2016; Maecker et al.,

2012). Eight additional antibodies (CD28, CD45, CD57, CD66b,

CD294, CD161, CXCR5, and TCRγδ) were added to the panel to bet-

ter delineate T-cells, NK cells, and granulocytes, and one marker was

dropped (CD24). In addition to the antibodies, the dry antibody cock-

tail also includes rhodium for the discrimination of live/dead cells

(Ornatsky et al., 2008). The details of the 30-marker panel are shown

in Table 1, and the workflow is shown in Figure 1.

The analysis of the panel was performed by Maxpar Pathsetter soft-

ware, which uses probability state modeling (PSM) (Bagwell, 2010;

Bagwell et al., 2015; Bagwell et al., 2018, Leipold, Maecker, & Stelzer,

2016) to obtain frequencies for 37 immune populations (see Table 2 for

model phenotype definitions) as well as stain assessments for all

30 markers. PSM-derived results have been previously shown to correlate

well with manual gating (Herbert, Miller, & Bagwell, 2012; Li et al., 2018,

2019; Miller, Hunsberger, & Bagwell, 2012; Wong et al., 2014; Wong,

Hunsberger, Bruce Bagwell, & Davis, 2013). Many different validation

tests needed to be performed prior to releasing this product. These tests

included liquid versus dry panel, intra-assay repeatability, intermediate

precision, manual gating versus modeling correlations, and inter-site

reproducibility. Most of these validations are presented in a publicly avail-

able white paper. Deep Immune Profiling with the Maxpar Direct Immune

Profiling System 400247 A2) and data from other tests have been added

to the Supporting Information. The purpose of this study is to report in

detail on the last stage of validation where the reproducibility of the

kit/analysis system was evaluated by multiple sites for both PBMC and

whole blood samples from healthy human subjects.

2 | MATERIALS AND METHODS

2.1 | Study sites

A total of seven sites (six in the United States plus Fluidigm Canada)

were selected to participate in these reproducibility studies. These

sites are designated as Sites 1, 2, 3, 4, 5, 6, and 7. Site 1 received

whole blood products in Week 1 of the study, for which it is desig-

nated as Site 1A, and in the second week of the study received whole

TABLE 1 Maxpar direct immune profiling assay 30-marker panel
with clones and heavy metals

Target Clone Metal

Anti-human CD45 HI30 89Y

Live/dead 103Rh-Intercalator (500 μM) N/A 103Rh

Anti-human CD196/CCR6 G034E3 141Pr

Anti-human CD123 6H6 143Nd

Anti-human CD19 HIB19 144Nd

Anti-human CD4 RPA-T4 145Nd

Anti-human CD8a RPA-T8 146Nd

Anti-human CD11c Bu15 147Sm

Anti-human CD16 3G8 148Nd

Anti-human CD45RO UCHL1 149Sm

Anti-human CD45RA HI100 150Nd

Anti-human CD161 HP-3G10 151Eu

Anti-human CD194/CCR4 L291H4 152Sm

Anti-human CD25 BC96 153Eu

Anti-human CD27 O323 154Sm

Anti-human CD57 HCD57 155Gd

Anti-human CD183/CXCR3 G025H7 156Gd

Anti-human CD185/CXCR5 J252D4 158Gd

Anti-human CD28 CD28.2 160Gd

Anti-human CD38 HB-7 161Dy

Anti-human CD56/NCAM NCAM16.2 163Dy

Anti-human TCRgd B1 164Dy

Anti-human CD294 BM16 166Er

Anti-human CD197/CCR7 G043H7 167Er

Anti-human CD14 63D3 168Er

Anti-human CD3 UCHT1 170Er

Anti-human CD20 2H7 171Yb

Anti-human CD66b G10F5 172Yb

Anti-human HLA-DR LN3 173Yb

Anti-human IgD IA6-2 174Yb

Anti-human CD127 A019D5 176Yb
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blood products from a second draw from the same donor, for which it

is designated as Site 1B. Site 1 did not participate in the PBMC part of

the study. Sites 2, 3, and 4 received whole blood and PBMC samples in

Week 1, and Sites 5, 6, and 7 received the products in the second

week. All sites were given careful instructions on the staining and anal-

ysis procedures, and Fluidigm Field Application Specialists were on

hand to provide general guidance on all the procedures.

2.2 | Whole blood collection and shipping

Human whole blood was obtained from Discovery Life Sciences

(Huntsville, AL). Whole blood from a single healthy donor was col-

lected into eight individual BD Vacutainer® blood collection tubes

containing heparin as an anticoagulant. Two tubes of the whole blood

were shipped on cold packs to each study site overnight in a

temperature-controlled shipping container.

2.3 | Whole blood staining

An additional heparin blocking step was performed (100 U/ml) for

20 min at room temperature to reduce nonspecific binding between

metal-tagged antibodies and eosinophils (Rahman, Tordesillas, &

Berin, 2016). Afterward, 270 μl of blood was added directly to four

dry antibody tubes and allowed to incubate for 30 min at room tem-

perature. Immediately following staining, erythrocytes were lysed by

the addition of 250 μl of Cal-Lyse directly to the staining tube. The

tubes were gently vortexed and allowed to incubate for 10 min at

room temperature followed by the addition of 3 ml of Maxpar water

and an additional 10 min of incubation. The tubes were washed three

times in Maxpar Cell Staining Buffer (CSB) followed by fixation in

1.6% paraformaldehyde for 10 min. Following fixation, the cells were

spun to a pellet, the fixative removed, and the pellet was resuspended

in 1 ml of the 125 nm Cell-ID™ Intercalator-Ir (Ornatsky et al., 2008)

and incubated overnight at 4� (See Figure 1 for the assay workflow).

2.4 | PBMC specimens

One lot of cryopreserved PBMC from a single healthy donor was

obtained from a commercial biological specimen supply source

(Discovery Life Sciences) and reserved as the reference lot for the

study. Two vials of cryopreserved PBMC were shipped on dry ice to

each of six sites. The PBMC samples were thawed based on the man-

ufacturer's (Discovery Life Sciences) recommendations, which was to

thaw in serum-free media with no anti-aggregate.

2.5 | PBMC staining

A vial of cryopreserved PBMC was thawed and washed. The viability

and cell count were determined and the cells were washed in CSB.

After the wash, the cells were resuspended in CSB to a concentration

of 6 × 107 cells/ml. FC receptors were blocked by adding 5 μl of

Human TruStain FcX to 3 × 106 cells in 50 μl and incubated for

10 min. About 215 μl of CSB was then added to the PBMC. About

270 μl of the PBMC was added directly added to each of the four dry

antibody tubes for antibody staining (see Table 1). After a 30-min

incubation, the cells were washed twice in CSB, followed by fixation

in 1.6% paraformaldehyde for 10 min. Following fixation, the cells

were spun to a pellet, the fixative was removed, and the pellet was

resuspended in 1 ml of the 125 nM Cell-ID Intercalator-Ir and incu-

bated overnight at 4�.

2.6 | Sample acquisition

Following the overnight incubation, the PBMC fixed cells were

washed twice in CSB and twice with Maxpar Cell Acquisition Solution

(CAS) with a final resuspension of the cells at 1 × 106 cells/ml in CAS

containing 0.1× EQ™ Four Element Calibration Beads. Whole blood

sample acquisition was also performed the next day post staining on a

Helios system utilizing CyTOF® Software version 6.7.1016 using the

Maxpar Direct Immune Profiling Assay template. All instruments were

F IGURE 1 Assay workflow. Based on the broad immune cell phenotyping flow panels for the Human Immune Project (Maecker et al., 2012),
the Maxpar Direct Immune Profiling Assay was designed as an optimized panel of 30 dry antibodies plus DNA intercalators in a single tube for
staining whole blood and PBMC. Data were acquired on a Fluidigm Helios and analyzed using Maxpar Pathsetter, a customized automated
analysis system powered by GemStone 2.0. Pathsetter software automatically cleans the data file by eliminating dead cells, debris, aggregates,
and normalization beads. Modeling software then identifies and enumerates a broad spectrum of immune populations and presents the results in
summary reports [Color figure can be viewed at wileyonlinelibrary.com]
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equipped with a WB Injector, and all samples were acquired in CAS

containing 0.1× EQ beads. Prior to the start of the study, all instru-

ments were evaluated to ensure performance at above the minimum

Helios system specifications for calibration. Following the instrument

tuning and bead sensitivity test, the system was preconditioned with

CAS. A minimum of 400,000 events for whole blood and 300,000

events for PBMC were acquired per file at a typical acquisition rate of

250–500 events/s.

TABLE 2 Immune cell populations and model definitions

Index Populations Model phenotypes

1 Lymphocytes CD3 T cells + B cells + NK cells + plasmablasts

2 CD3 T cells CD8 T cells + CD4 T cells + γδ T cells + MAIT/NKT cells

3 CD8 T cells CD3+ CD66b- CD19- CD8+ CD4- CD14- CD161- TCRgd- CD123- CD11c-

4 CD8 naïve CD8 T cells + CD45RA+ CCR7+ CD27+

5 CD8 central memory CD8 T cells + CD45RA- CCR7+ CD27+

6 CD8 effector memory CD8 T cells + CCR7- CD27+

7 CD8 terminal effector CD8 T cells + CCR7- CD27-

8 CD4 T cells CD66b- CD3+ CD8- CD4+ CD14- TCRgd- CD11c-

9 CD4 naïve CD4 T cells + CD45RA+ CCR7+ CD27+

10 CD4 central memory CD4 T cells + CD45RA- CCR7+ CD27+

11 CD4 effector memory CD4 T cells + CD45RA- CCR7- CD27+

12 CD4 terminal effector CD4 T cells + CD45RA- CCR7- CD27-

13 Tregs CD4 T cells + CD25+ CD127- CCR4+

14 Th1-like CD4 T cells + CXCR3+ CCR6- CXCR5- CCR4-

15 Th2-like CD4 T cells + CXCR3- CCR6- CXCR5- CCR4+

16 Th17-like CD4 T cells + CXCR3- CCR6+ CXCR5- CCR4+

17 γ T cells CD66b- CD3+ CD8dim,- CD4- CD14- TCRgd dim,+

18 MAIT/NKT cells CD66b- CD3+ CD4- CD14- CD161+ TCRgd- CD28+ CD16-

19 B cells CD3- CD14- CD56- CD16 dim,- CD19+ CD20+ HLA-DR dim,+

20 B naïve B cells + CD27-

21 B memory B cells + CD27+

22 Plasmablasts CD3- CD14- CD16-,dim CD66b- CD20- CD19+ CD56- CD38++ CD27+

23 NK cells CD14- CD3- CD123- CD66b- CD45RA+ CD56 dim,+

24 NK early NK cells + CD57-

25 NK late NK cells + CD57+

26 Monocytes CD3- CD19- CD56- CD66b- HLA-DR+ CD11c+

27 Monocytes classical Monocytes + CD14+ CD38+

28 Monocytes transitional Monocytes + CD14 dim CD38 dim

29 Monocytes non-classical Monocytes + CD14- CD38-

30 DCs pDCs + mDCs

31 pDCs CD3- CD19- CD14- CD20- CD66b- HLA-DR dim,+ CD11c- CD123+

32 mDCs CD3- CD19- CD14- CD20- HLA-DR dim,+ CD11c dim,+ CD123- CD16 dim,- CD38

dim,+ CD294- HLA-D

33 Granulocytes Neutrophils + basophils + eosinophils + CD66b- neutrophils

34 Neutrophils CD66b dim,+ CD16+ HLA-DR-

35 Basophils HLA-DR- CD66b- CD123 dim,+ CD38+ CD294+

36 Eosinophils CD14- CD3- CD19- HLA-DR- CD294+ CD66b dim,+

37 CD66b- neutrophils CD3- CD19- CD66b- CD56- HLA-DR- CD123- CD45-

The above table shows the 37 immune cell populations enumerated and their associated model phenotypes.

The modeling algorithm is designed to fit the measurements in the order listed by the phenotype. Nomenclature such as TCRγδ dim,+ means that dim to

positive events were selected. Occasionally the same marker is modeled twice, where the first time is a broader classification and the last time is a more

specific classification. See Section 4 for details on the subsetting and staging rationales for monocytes, CD8 T-cells, and CD4 T-cells.
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2.7 | Data normalization

After acquisition, data were normalized using the CyTOF Software

v. 6.7.1016. This method normalizes the data to a global standard,

called a bead passport, determined for each log of EQ beads. This

passport contains a profile of mean Di counts of all the masses for a

particular lot of the beads as determined by multiple measurements

during the manufacture of the EQ beads. The normalization factor is

the ratio of passport median Di values to bead singlet population

median Di values of the encoding isotopes. Isotopes in the EQ beads

cover the mass range measurable on the CyTOF instrument. The nor-

malization factors for mass channels between the encoding isotopes

are linearly interpolated. All mass channel values for all events are

then multiplied by these normalization factors to obtain the normal-

ized values, and data are written to the normalized file.

2.8 | Data analysis

FCS files generated by the Helios were analyzed by Maxpar

Pathsetter, an automated analysis system powered by GemStone™

2.0.41 (Verity Software House, Topsham, ME). Initial analyses process

raw normalized FCS3.0 files with a specially designed Cleanup PSM

model. The Cleanup model leverages Gaussian pulse-processing

parameters such as Center, Width, Offset, and Residual as well as

DNA intercalators to eliminate unwanted events. Subsequent to

cleanup, the program produces new FCS3.0 files consisting of only

intact live singlet cells. This new cleaned file is then processed by an

automated analysis of a second model, which also uses PSM to iden-

tify and label the major immune cell populations in sample files.

This system is integrated with dimensionality-reduction mapping

known as Cauchy Enhanced Nearest-neighbor Stochastic Embedding

(Cen-se0™), which generates a visual display of high-dimensional data

labeled with the major cell populations. Figure 2 shows a Cen-se0 map of

only QC measurements from one of the whole blood files in the study

before and after the cleanup procedure (see top-left and right panels) as

well as a map of all markers after full analysis (see bottom-right panel).

All analyses were done on the same mid-level PC (Intel® Core™ i7-6700

CP @3.40 GHz RAM: 24 GB x64-based processor). The average run time

for the whole blood Cleanup Stage was 37.3 s with a range of

36.5–37.9. The run time statistics for the other parts of the study were

PBMC Cleanup Stage: 33.2 s (32.2–39.7), whole blood Phenotyping and

Cen-se' Stage: 207.7 s (137.3–227.9), PBMC Phenotyping and Cen-se'

Stage: 233.6 s (212.8–282.1). The complete average analysis time for

the whole blood samples was 4.1 min and for PBMCs, 4.4 min.

3 | RESULTS

3.1 | Whole blood

A total of 32 whole blood-derived files from seven different sites

were analyzed by the cleanup phase of the analysis (see Table 3 for a

summary of the results). On average, 70.9% of the events were con-

sidered desirable “live intact cells”; 26.9% were excluded because they

were classified as dead cells, debris, true aggregates, aborted pulses,

F IGURE 2 Cleanup and analysis
Cen-se0 maps: The top two panels are
Cen-se0 maps created from the QC
measurements: DNA1, DNA2, Live/
Dead, Beads, Event Length, Residual,
Center, Width, and Offset. The top-
left panel represents the raw
normalized data from one file and the
top-right the associated cleaned
exported data. In the top-left panel, A
(dark gray) are the live intact events, B
(blue) are the low-DNA1 or debris
events, C (yellow) are the
normalization beads, D (blue) are
events with zero pulse-processing
parameters (Residual, Center, Width,
and Offset), E (red) are “not cleaned
events” with high Residual and Event
Lengths, F (red) are true aggregates
with high DNA1 and DNA2
intensities, G (yellow) are bead/cell
aggregates, and H (red) are coincident
ion clouds with low and high center
values. The top-right panel is the Cen-
se0 map of only the “cleaned” events.
The bottom panel shows the same
data with all markers selected after
cleanup and modeling [Color figure
can be viewed at
wileyonlinelibrary.com]
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or coincident ion clouds; 1.8% were normalization beads; and 0.4%

were unclassified. Approximately 13.2% of the excluded events were

debris, 10.9% were high DNA1 aggregates, and the %dead cell count

was low at 0.2%. All files had CeO+ ratios, a measure of plasma tem-

perature, of less than 3. The average acquisition rate was approxi-

mately 326.8 events/s, and the average % of aggregates was

reasonably low (%CD19 + CD3+ and %CD14 + CD3+ less than 0.2

and 2.6%, respectively). A total of 400,000 events were considered by

the cleanup routine, and the average time spent in this step was

approximately 37 s.

The deep immunophenotyping frequency results for whole blood

are summarized in Table 4. The left side of the table shows the enu-

merated populations, and the numbers indicate the percentages of

live intact cells in each of the replicates from all seven sites. Three

replicates (Site 1A Rep 4, Site 1B Rep 3, and Site 5 Rep 1) were

excluded due to background signal in the Er168 channel (see

Section 4 for details). Figure 3 summarizes the inter-site reproducibil-

ity of all populations with both SDs and %CV of each population.

Means, SDs, and %CVs from Sites 1A, 2, 3, and 4 were calculated sep-

arately from Sites 1B, 5, 6, and 7 because they were from a different

sample. Statistics from both sets of sites were averaged. The percent-

ages of live intact cells for each population and SDs are summarized in

the top panel, and the %CVs are presented as a bar graph in the bot-

tom panel. The inter-site average %CV was 14.4%, ranging from 2.3

to 96.6%, with higher %CVs generally associated with very low-

frequency populations. The intra-site reproducibility is summarized in

Table 5 and had an average %CV of 7.9%.

3.2 | PBMC

A total of 24 FCS3.0 PBMC-derived files from six different sites were

analyzed by the cleanup phase of the analysis (See Table 6 for a sum-

mary of the results). On average, 76.7% of the events were consid-

ered desirable “live intact cells”; 21.4% were excluded because they

were classified as dead cells, debris, true aggregates, aborted pulses,

or coincident ion clouds; 1.8% were normalization beads, and 0.08%

were unclassified. Approximately 4.2% of the excluded events were

debris, 0.9% were dead, and 11.4% were high DNA1 aggregates. All

files had CeO+ ratios of less than 3.5. The average acquisition rate

was approximately 300 events/s, and the average % of double-

positive aggregates was reasonably low (%CD19 + CD3+ and %

CD14 + CD3+ less than 0.3 and 2.3%, respectively). Approximately

300,000 events were considered by the cleanup routine, and the

average time spent in this step was approximately 33 s.

The deep immunophenotyping results are summarized in Table 7.

The left side of the table shows the enumerated populations, and the

numbers indicate the percentages of live intact cells from the four

replicates from all six sites. Figure 4 summarizes the inter-site repro-

ducibility of the percentages with both SDs as well as %CV. The per-

centiles and SDs are summarized in the top panel, and the %CVs

presented as a bar graph in the bottom panel. The percentages, SDs,

and %CVs were an average of Cohort 1 (Week 1) and 2 statistics. The

average and median %CV were 17.7 and 13.7%, respectively. TheT
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intra-site reproducibility is summarized in Table 8 and had an average

and median %CV of 8.4 and 4.5%, respectively, for all sites and

populations.

4 | DISCUSSION

The average event inclusion percentage for this study was approxi-

mately 70% for whole blood (see Table 3) and 76.7% for PBMC (see

Table 6), which are generally comparable to gate-based inclusion per-

centages (data not shown). The site-to-site variability is probably

either due to different environmental factors during the shipping of

the samples or to slightly different site specimen handling techniques.

The increase in %CD14+ CD3+ in Table 3 is due to the inclusion of

the three files with a high CD14 Er168 background.

The average acquisition rate for both the whole blood and PBMC

studies was approximately 300 events/s. Although the acquisition

system can be set for faster rates, the Poisson nature of ion cloud for-

mation creates more coincident clouds at faster rates. Most of these

coincident events are removed in the cleanup stage, but the routine is

not 100% effective in eliminating these events. A rate between

250 and 350 events/s is currently recommended by Fluidigm

(Fluidigm, 2018).

The Cleanup model exports FCS3.0 data that are not only avail-

able for PSM automated analysis but also for other types of cytometry

analysis as well. For investigators interested in oncological samples,

the DNA selection parts of the Cleanup model can easily be

deactivated in order that DNA hyperdiploid populations are notT
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F IGURE 3 Whole blood reproducibility. The top panel shows the
mean and ± SD percentage of live intact cells for all 37 evaluated
populations across all seven sites. The bottom panel shows the
associated %CVs for each population where the average was 14.4%
[Color figure can be viewed at wileyonlinelibrary.com]
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removed. However, if these measurements are deactivated, the num-

ber of true aggregates in the exported “cleaned” file is likely to

increase. The data obtained in the multi-site study were generated

using a prototype panel lot. Three out of 24 runs were excluded from

the data presented due to background signals in the Er168 channel,

which has been eliminated in subsequent manufacturing lots.

The staging approach for CD8 T-cells (see Table 2) was to first

model the downregulation of CCR7 and CD27 to stratify events into

three compartments: naïve + central memory, effector memory, and

terminal effector. CD45RA was found not to be a good modeling

marker for staging because of its relatively wide line-spread (data not

shown) and branched nature (Inokuma, Maino, & Bagwell, 2013). The

TABLE 5 Whole blood intra-site reproducibility

Whole blood intra-site reproducibility %CV

Population Site 1A Site 2 Site 3 Site 4 Average Wk 1 Site 1B Site 5 Site 6 Site 7 Average Wk 2

Lymphocytes 2.8 4.1 4.0 1.5 3.1 2.4 8.3 5.2 4.2 4.0

CD3 T cells 2.6 3.7 3.1 2.2 2.9 2.9 8.4 6.0 2.8 3.9

CD8 T cells 3.3 3.5 3.7 3.1 3.4 3.6 6.5 7.9 2.6 4.2

CD8 naïve 3.5 4.0 7.8 3.8 4.8 4.3 8.4 7.0 2.6 5.1

CDS central memory 4.9 5.0 18.5 8.4 9.2 6.0 5.3 12.4 2.8 8.0

CDS effector memory 2.5 4.5 1.9 3.7 3.1 2.7 4.0 9.9 4.4 4.1

CDS terminal effector 3.7 4.1 6.8 9.7 6.1 12.0 9.7 6.4 8.7 7.5

CD4 T cells 2.6 4.0 3.0 1.9 2.9 2.9 10.3 4.7 2.9 3.9

CD4 naïve 4.1 5.7 17.7 2.1 7.4 2.0 7.1 2.9 3.8 5.9

CD4 central memory 3.3 4.5 7.4 15.3 7.6 8.0 23.3 3.9 7.5 9.0

CD4 effector memory 4.2 4.8 0.6 8.6 4.6 2.2 6.0 6.3 1.7 4.3

CD4 terminal effector 9.4 6.1 4.2 7.3 6.7 3.6 8.1 10.6 1.4 6.4

γδ T cells 3.9 3.8 4.7 3.1 3.9 1.5 5.9 7.3 4.3 4.3

MAIT/NKT cells 3.4 1.9 2.4 10.9 4.6 4.0 2.6 12.0 4.1 5.1

B cells 4.0 6.5 23.5 1.9 9.0 3.1 11.8 12.5 5.7 8.7

B naïve 4.4 6.6 25.4 2.0 9.6 2.6 10.7 13.6 5.9 9.0

B memory 2.8 6.9 12.8 3.9 6.6 7.0 20.6 8.5 5.0 8.2

Plasmablasts 11.3 9.7 15.5 21.7 14.5 10.3 16.3 15.8 11.7 14.1

NK cells 4.3 4.1 8.5 1.7 4.6 1.6 9.0 3.2 9.4 5.2

NK early 4.3 5.0 7.0 1.9 4.6 2.1 12.6 5.8 10.1 5.9

NK late 4.5 1.5 19.6 4.0 7.4 0.9 6.9 8.8 7.5 6.8

Monocytes 2.7 1.9 4.2 10.7 4.9 5.4 21.2 2.0 1.1 6.0

Monocytes classical 2.7 2.0 3.6 13.5 5.5 5.6 22.2 2.8 1.2 6.6

Monocytes transitional 4.4 9.3 29.5 7.9 12.8 6.8 10.6 16.5 2.7 11.2

Monocytes non-classical 5.2 5.8 13.1 6.6 7.7 2.4 19.5 7.5 8.7 8.5

DCs 35.0 7.9 21.4 16.7 20.3 5.4 8.5 4.7 4.7 13.8

pDCs 5.8 3.0 9.7 1.6 5.0 11.0 15.0 9.6 7.0 7.5

mDCs 43.4 11.9 26.3 24.1 26.4 3.2 6.1 6.1 3.7 16.8

Granulocytes 1.2 1.9 1.6 0.8 1.4 0.2 2.6 2.1 1.2 1.4

Neutrophils 1.0 l.8 2.1 2.6 1.9 0.5 2.5 2.1 1.2 1.7

Basophils 5.6 2.6 1.5 7.9 4.4 4.3 6.5 7.0 1.9 4.6

Eosinophils 14.4 3.8 3.5 4.1 6.5 2.0 5.5 3.1 2.6 5.1

CD66b- Neuts 8.6 73.7 38.9 53.2 43.6 36.6 35.9 66.1 37.4 43.8

Tregs 5.0 2.6 25.1 3.7 9.1 5.6 7.0 4.5 4.6 7.5

Th1-like 2.9 7.0 6.4 4.9 5.3 5.9 8.6 30.0 6.2 8.6

Th2-like 3.9 4.0 5.2 5.2 4.6 7.0 11.0 19.3 7.6 7.5

Th17-like 4.9 5.6 14.5 1.9 6.7 3.8 13.2 29.9 3.9 9.4

Mean 6.4 6.6 10.9 7.7 7.9 5.2 10.7 10.4 5.5 7.9

BAGWELL ET AL.

		  89



system then used a combinatory analysis system called TriCOM to

divide the first stage into its naïve and central memory components.

The staging approach for CD4 T-cells (see Table 2) was to model the

downregulation of CD45RA, CCR7, and CD27 to create the four

stages: naïve, central memory, effector memory, and terminal effector.

The CD4 T-cell terminal effector was assumed to be CD45RA−

because CD45RA+ events were generally not observed in any sample

in this study (see Figure 5) and it has been recognized that there are a

few if any CCR7− CD45RA+ events in the CD4 T-cell compartment

for healthy individuals (Seder & Almed, 2003).

Subclassification of monocytes into Classical, Transitional, and

Non-classical used CD14 and CD38 (see Table 2) instead of the more

traditional CD14 and CD16 (Picozza, Battistini, & Borsellino, 2013).

The patterns produced by CD14 and CD38 were found to classify

analogous subpopulations while improving the overall reproducibility

of the results (data not shown).

The data presented in Tables 4 and 7 summarize all the cell popu-

lation frequency results obtained from the whole blood and PBMC

studies. An inspection of these tables shows the high degree of repro-

ducibility of the system for almost all immune populations. Figures 3

and 4 summarize the inter-site variability of the whole blood and

PBMC studies. The populations are ordered from the highest percent-

age (left) to the lowest (right) in order to better appreciate the

general effect of counting error increasing the magnitude of CVs for

TABLE 6 PBMC cleanup summary statistics

Multi-site PBMC reproducibility study: Cleanup statisticsa

Sites Replicates

%

Clean b

%

Excluded

%

Beads

%

Unclass c

%

Debris

%

Dead

%

Aggs

CeO2

ratio

Acq

rate

%CD19+

CD3+ d

%CD14+

CD3+ e

Total

Cells

Run

timef

Site 2 1 76.9 21.7 1.4 0.1 4.0 0.3 11.4 1.8 316.5 0.3 1.2 300,000 32.2

2 75.9 22.8 1.3 0.1 5.2 0.3 11.1 1.9 298.8 0.3 1.4 300,000 33.2

3 77.3 21.5 1.1 0.1 4.1 0.2 11.1 1.9 313.2 0.3 1.1 300,000 33.0

4 78.2 20.5 1.3 0.1 4.3 0.2 10.1 1.2 214.2 0.2 1.1 288,975 32.4

Site 3 1 73.7 24.0 2.2 0.1 6.8 0.1 11.4 2.1 266.1 0.4 1.3 298,335 33.1

2 68.8 28.4 2.6 0.1 8.7 0.1 13.2 2.1 303.5 0.5 1.6 400,000 39.9

3 76.6 16.7 6.6 0.1 3.0 0.1 7.8 2.0 248.3 0.2 1.2 300,000 33.6

4 75.2 19.4 5.3 0.1 4.0 0.1 9.0 2.0 279.3 0.3 1.9 300,000 32.9

Site 4 1 72.1 27.0 0.8 0.1 6.2 0.6 15.0 2.8 413.2 0.6 1.5 300,000 33.7

2 66.4 32.6 0.7 0.2 6.2 0.4 18.2 3.3 414.9 0.5 1.6 300,000 33.3

3 79.2 19.5 1.2 0.1 4.0 0.3 10.6 3.0 300.0 0.4 1.4 300,000 32.5

4 76.7 21.7 1.5 0.1 5.1 0.2 11.3 2.9 295.6 0.5 1.5 300,000 32.8

Site 5 1 75.7 22.8 1.4 0.1 2.2 0.2 15.5 1.1 403.8 0.5 1.4 300,000 32.9

2 78.2 20.0 1.7 0.1 2.0 0.0 13.5 1.1 361.0 0.4 1.3 300,000 32.6

3 75.9 22.5 1.5 0.1 2.8 0.2 15.2 1.2 394.7 0.4 7.9 300,000 32.7

4 77.4 20.2 2.2 0.2 8.2 0.4 7.6 1.2 241.5 0.2 14.2 300,000 32.5

Site 6g 1 75.6 23.3 1.0 0.1 4.6 3.1 11.0 1.4 254.2 0.2 1.2 300,000 33.0

2 74.4 24.9 0.6 0.1 6.1 3.6 10.2 1.4 244.7 0.3 1.9 297,593 32.6

3 83.6 15.3 1.1 0.0 2.5 2.8 5.4 1.4 127.6 0.1 2.0 300,000 32.8

4 75.7 19.5 4.7 0.1 4.9 4.0 6.5 1.4 164.5 0.2 2.3 300,000 32.4

Site 7 1 81.7 17.4 0.8 0.0 1.9 1.3 11.7 1.7 317.1 0.3 1.3 300,000 32.9

2 80.7 18.6 0.7 0.0 1.7 1.6 12.9 1.6 356.7 0.3 2.0 300,000 33.0

3 82.0 17.4 0.6 0.0 1.4 1.0 12.4 1.7 339.4 0.4 1.8 295,265 33.0

4 83.5 15.9 0.6 0.0 1.4 0.9 11.1 1.9 308.3 0.3 1.7 300,000 32.7

Mean 76.7 21.4 1.8 0.08 4.2 0.9 11.4 1.8 299.1 0.3 2.3 303,340 33.2

aAll samples were stained with Maxpar Direct Immune Profiling Assay.
bPercent of total events. %Cleaned+%Excluded+%Beads+%Unclassified = 100.
cPercent of events that were not classified into the cell types Cleaned, Excluded, or Beads.
dPercent of CD19+ CD3+ double positives of CD19+ singlets + CD3+ singlets.
ePercent of CD14+ CD3+ double positives of CD14+ singlets + CD3+ singlets.
fUnits of seconds.
gThe first acquisition of Site 6 samples had insufficient EQ Beads for normalization. Samples were spun down and resuspended again in fresh CAS/0.1 EQ

Beads to acquire data for analysis.
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low-frequency populations. The average %CV for all 37 populations

was 14.4% for whole blood and 17.7% for PBMC. The slight increase

in variability for the PBMC may be due in part to the extra cell manip-

ulations for this type of preparation. A high %CV was observed for

the population labeled as CD66b− neutrophils in whole blood mainly

due to its low frequency.

The upper panel insets with the ±SD ranges show a high degree of

reproducibility even among many of the very low-frequency

populations. Some populations are better defined by the panel than

others, which explain some of the variability in the %CVs for

populations with similar frequencies, and additional markers may be

included to enhance identification in studies focused on low-

frequency cell populations. The PBMC portion of this study is reason-

ably comparable to the multi-site study published by Leipold

et al. (2018).

Tables 5 and 8 summarize the intra-site reproducibility of the

whole blood and PBMC studies. As expected, the average and median

intra-site %CV's are lower than the inter-site %CV's due to slight site-

to-site biases. Some of the high intra-site %CV's for both whole blood

and PBMC were due to outliers in the relatively small number of repli-

cates. There was some disparity in intra-site %CV's across all

populations among the sites in the study, which was more pro-

nounced for low-frequency cell types.

The dry nature of the reagent in this assay eliminates most

pipetting errors and reduces overall preparation time. An important

feature of this system is that additional reagents can be added toT
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F IGURE 4 Peripheral blood mononuclear cells (PBMC)
reproducibility. The top panel shows the mean and ±SD percentage of
live intact cells for all 37 evaluated populations. Absent from this plot
are the granulocyte, neutrophils, basophils, eosinophils, and CD66b−
granulocytes. The bottom panel shows the associated %CVs for each
population, where the average was 17.7%. The percentages, SDs, and
%CVs were an average of Cohort 1 (Week 1) and 2 statistics [Color
figure can be viewed at wileyonlinelibrary.com]
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evaluate new populations because there are numerous open heavy

metal channels. The Maxpar Pathsetter software is also designed for

users to easily amend the models to take advantage of new markers

and cell types.

The performance of the analysis system was designed to do a full

and automated analysis in less than 5 min. The Cen-se0 mapping sys-

tem is a high-resolution and highly parallelized variant of the t-SNE

algorithm (van der Maaten, 2009, 2014; van der Maaten & Hinton,

2008) that can create maps of hundreds of thousands of events in

1 min or less.

The dry nature of the reagent coupled with automated data analy-

sis is not only convenient but also provides a high degree of reproduc-

ibility within and among multiple test sites, whether they are

analyzing whole blood or PBMC samples. This new mass cytometry

assay provides a comprehensive yet practical solution for deep

immune phenotyping.

TABLE 8 PBMC intra-site reproducibility

Intra-site PBMC reproducibility %CV

Population Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Average Median

Lymphocytes 1.0 0.3 0.3 9.1 5.0 1.2 2.8 1.1

CD3 T cells 0.5 1.4 3.1 11.2 5.1 2.4 4.0 2.7

CD8 T cells 0.9 1.3 0.9 8.2 9.2 1.6 3.7 1.4

CD8 naïve 1.0 0.7 1.6 8.0 9.0 2.6 3.8 2.1

CD8 central memory 10.0 4.6 13.5 25.8 13.4 18.3 14.3 13.4

CD8 effector memory 3.2 4.8 5.0 11.4 5.0 2.8 5.4 4.9

CD8 terminal effector 5.4 1.7 5.6 13.7 19.2 2.4 8.0 5.5

CD4 T cells 0.5 1.9 5.0 10.6 10.3 2.0 5.1 3.5

CD4 naïve 1.0 1.5 5.4 11.2 8.6 2.0 5.0 3.7

CD4 central memory 4.7 1.6 8.0 16.8 20.6 3.9 9.3 6.4

CD4 effector memory 3.2 3.9 4.4 9.6 14.8 4.1 6.7 4.3

CD4 terminal effector 1.2 5.7 5.3 9.6 5.1 2.1 4.8 5.2

γδ T cells 2.0 1.2 0.9 14.6 9.9 2.5 5.2 2.3

MAIT/NKT cells 2.1 2.3 3.1 32.8 11.3 20.9 12.1 7.2

B cells 4.3 2.9 6.4 13.2 5.7 0.6 5.5 5.0

B naïve 4.7 3.1 7.4 13.3 5.6 1.2 5.9 5.1

B memory 2.8 3.9 4.2 18.0 13.6 3.0 7.6 4.1

Plasmablasts 3.7 12.4 13.2 27.0 13.2 5.7 12.5 12.8

NK cells 2.3 4.0 10.1 14.4 29.0 3.3 10.5 7.0

NK early 0.9 4.6 9.4 14.8 30.4 3.8 10.7 7.0

NK late 3.0 3.8 10.4 14.3 28.4 3.1 10.5 7.1

Monocytes 1.6 4.4 1.2 11.0 8.5 2.5 4.9 3.5

Monocytes classical 1.8 5.0 1.1 12.9 12.6 2.6 6.0 3.8

Monocytes transitional 2.6 4.5 4.1 12.0 6.8 1.8 5.3 4.3

Monocytes non-classical 3.8 1.2 4.3 65.3 15.6 2.6 15.5 4.0

DCs 4.3 10.9 10.3 61.5 9.5 7.2 17.3 9.9

pDCs 0.2 5.2 5.6 60.7 13.1 4.7 14.9 5.4

mDCs 5.4 14.3 13.1 61.9 9.4 8.7 18.8 11.3

Tregs 2.7 3.3 8.0 13.5 58.6 4.9 15.2 6.5

Th1-like 5.3 5.6 12.1 24.8 66.7 18.6 22.2 15.3

Th2-like 2.4 4.5 3.9 8.2 73.8 10.6 17.2 6.4

Th17-like 1.9 2.8 20.4 8.1 146.3 33.8 35.6 14.3

Mean 2.8 4.0 6.5 20.2 21.7 5.9 10.2 6.2

Median 2.5 3.8 5.4 13.4 11.9 2.9 6.7 4.6

The 37 tested populations appear in the first column, and the %CVs of the four replicate PBMC samples are summarized for each site. The means and

medians of the %CVs for all populations and sites appear on the outside rows and columns.
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Mass Cytometry: a robust platform for the comprehensive
immunomonitoring of CAR-T-cell therapies

By reprograming T-cell specificity, chimaeric antigen recep-

tors’ (CARs) function and persistence have changed the land-

scape of cancer immunotherapy with remarkable efficacy

against a range of B-cell malignancies and have many

prospective applications.1,2 Investigating the immune mecha-

nisms that underlie the success of CAR-T-cell therapy is a

crucial challenge.3,4,5 The advent of time-of-flight mass

cytometry (CyTOF) has enabled high-dimensional and unbi-

ased examination of complex systems.6,7 We present here the

first contribution of mass cytometry to the comprehensive

immunomonitoring of CAR-T-cell therapies.

We constructed an original platform to determine whether

identification of CAR-T cells and immune cells lacking CAR

(non-CAR) and their functional states in peripheral blood

would be possible in a single-pass mass cytometry assay. We

therefore customized a commercially available immune panel

(Maxpar Direct Immune Profiling System, Fluidigm, San

Francisco, CA, USA) for mass cytometry with a CAR-T-cell

detection reagent along with complementary markers.8

The mass cytometry assay was developed in patients with

refractory diffuse large B-cell lymphoma (DLBCL) and acute

lymphoblastic leukemia (ALL) treated in our CAR-T-cell

programme by tisagenlecleucel (Kymriah, Novartis, Bale,

Suisse; Table S1). Patients received a lymphodepletive regi-

men, CAR-T-cell infusion and post CAR-T-cell care accord-

ing to standard practices and all gave written informed

consent.9

Development and robustness of a mass
cytometry customized panel for CAR and non-
CAR immune cell determination

The Maxpar Direct Immune Profiling System, bringing

together mass cytometry technology, a 30-antibody panel and

fully automated reporting, is a high-dimensional immune

profiling assay designed to broadly look at the phenotypes

and functions of immune cell subsets through a single-tube

view. So far, no metal-tagged antibodies for mass cytometry

that identify CAR-T cells have been described. Therefore,

we customized the Maxpar panel by developing a cadmium

(106/116Cd)–anti-biotin CD19Fc (106/116 cadmium metal iso-

topes, Fluidigm, Canada; pure anti-biotin antibody and

CD19Fc Detection Reagent, biotin, Milteny Biotec, Bergisch

Gladbach, Germany) that identify CAR-T cells and validated

its robustness by comparison with routine assays. CAR-T

cells were usually assessed by flow cytometry, using the CAR

Detection Reagents (Miltenyi), and by quantitative poly-

merase chain reaction (qPCR) using an assay commercialized

to quantify HIV-1 (Generic HIV DNA Cell� test for research

use, Biocentric, Bandol, France).10,11 These two assays per-

formed similarly (r = 0�6782, P < 0�0001 by Spearman corre-

lation; n = 44; Fig 1A and Figure S1). Over a broad range of

frequencies from 0�12 to 22% CD3+ CAR-T cells, we showed

that, for the detection of CAR-T cells, results obtained with

our 106/116Cd–anti-biotin CD19Fc used for mass cytometry

ª 2021 British Society for Haematology and John Wiley & Sons Ltd
British Journal of Haematology, 2021, 194, 779–792
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strongly correlated with those obtained by flow cytometry

(Pearson correlation; r = 0�95, P < 0�05; n = 72; confirmed

by the validation method of Bland–Altman; Fig 1B).

We also completed the panel with four other anti-human

markers (NKP30, PD1, CD163 and CD69, tagged with 159Tb,
175Lu, 165Ho and 162Dy, respectively; Fluidigm) and checked that

Fig 1. Robustness of mass cytometry for the monitoring of blood chimaeric antigen receptor (CAR)-T cells and immune cells. Peripheral blood

mononuclear cells from 10 patients having received CAR-T cells were stained and analyzed to determine the populations of CAR-T and immune

cells using mass cytometry, flow cytometry and quantitative polymerase chain reaction (qPCR). For flow cytometry, data acquisition and analyses

were performed on a Navios flow cytometer (Beckman Coulter, Villepinte, France); for qPCR, data were acquired on a Light Cycler� 480 (Roche

Diagnostics, Meylan, France); for mass cytometry, data were acquired on a Helios machine and analyzed using Maxpar Pathsetter software

(Gemstone, Verity Software House, Topsham, ME, San Francisco, CA, USA with Fluidigm) with integrated dimensionality reduction mapping

(Cen-seTM). (A) Routine assays for peripheral CAR-T-cell determination using flow cytometry and qPCR. Representative biaxial plot of CD3+ and

CD19Fc+ CAR-T cells (left panel). Flow cytometry for measurement of the percentage of CD19Fc+ CAR-T cells (Miltenyi Biotec) and qPCR for

quantification of long-terminal repeat (LTR) sequences (Generic HIV DNA Cell�test for research use, Biocentric, Bandol, France) performed sim-

ilarly (n = 44; P < 0�001 using a Spearman correlation [GraphPad software, Prism, San Diego, CA, USA]; middle panel). Representative quantifi-

cation of CAR-T cells over time using the two assays. qPCR copies of HIV; percentage of CD3+/CD19Fc+ CAR-T cells using flow cytometry;

absolute value (/mm3) of CD3+/CD19Fc+ CAR-T cells (right panel). (B) Strong agreement between the percentages of CD19Fc+ CAR-T cells as

determined by mass and flow cytometry (n = 72). Pearson correlation between the quantification of CAR-T cells using our cadmium (106/119Cd)–
anti-biotin, CD19Fc and the CD19 CAR Detection reagent (Miltenyi) for respectively mass and flow cytometry; the linear regression line is shown

on the left panel. Representative biaxial plot of percentage of CD3+/CD19Fc+ CAR-T cells using mass and flow cytometry and Bland–Altman vali-

dation method (right panel). (C) Validation of the customized mass cytometry panel for T-cell composition (n = 52). Mann–Whitney U test

(GraphPad; left panel) together with the Bland–Altman validation method (middle panel) confirmed that mass cytometry correlated strongly with

routine flow cytometry assays for measurement of the main subsets of T cells (CD3, �4, �8, -HLA-DR, �69, �25, �45RA, �45RO). These data

also allowed to convert CAR–T cells detected by mass or flow cytometry into the absolute value of viable CD3+ cells, as measured by single-

platform flow cytometry (right panel). CMF, flow cytometry; CMM, mass cytometry. [Colour figure can be viewed at wileyonlinelibrary.com]
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the identification of the main immune cell populations and sub-

sets together with automatic data analyses remained valid using

this customized panel. As shown in Fig 1C, the customized

Maxpar panel and flow cytometry strongly correlated for the

detection and quantification of immune cell subsets (r = 0�97,
P < 0�05; confirmed by the Bland–Altmanmethod).12

Fig 2. Automated identification of cell populations and their functional states by mass cytometry. (A) t-Distributed stochastic neighbour embedding

(t-SNE) overview of identity and activity of chimaeric antigen receptor (CAR) and non-CAR immune cells over time after CAR-T-cell administra-

tion, analyzed with the OMIQ software in order to obtain the t-SNE maps. Shown is one representative patient. (a) Overview of non-CAR immune

cells and subsets and their activated and non-activated states. Activated CD4+ and CD8+ cells, cytolytic natural killer (NK) cells and classical mono-

cytes are revealed through combinatorial expression of respectively HLA-DR and CD69, CD16/CD56/NKp30 and CD14/CD16 over time after admin-

istration; the mean percentage of activated cells in the different populations is indicated. Activation reached a maximum on Day 7 or 14 and then

decreased with time. Cells are manually coloured according to their immune cell lineage. (b, c, d) Overview of CAR-T-cell activation and antigen-ex-

perience state (b) Activation profiles of CAR-T cells: the expression of HLA-DR and CD69 shows that almost all CAR- T cells were activated during

the 14 days following administration (percentages over time indicate CAR-T cells expressing HLA-DR and CD69). Black identifies unsigned (non-ac-

tivated) CAR-T cells isolated by manual gating (c) As a result of their activation, most of the CAR T cells were senescent, as shown by their CD57

expression; percentage of senescent cells over time is indicated (d) The differential expression patterns of CCR7 and CD45 RA identify the maturation

and antigen-experience states of CAR-T cells, such as na€ıve, effector, effector memory and central memory (left panel). Most CAR-T cells are effector

memory T cells; the percentage of both TEM and TEMRA cells is indicated. (B) Clustering of CAR and non-CAR immune cells. (Left) Clustering.

Data from blood samples collected on day 14 after CAR-T-cell administration were pooled, clustered and automatically annotated with the OMIQ

software offering an overview of highly expressed markers on specific populations (n = 5). (Right) PD1 expression on CAR-T cells over time. Note

the high expression of PD1 until day 28 on CD8+ CAR-T cells. [Colour figure can be viewed at wileyonlinelibrary.com]
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Customized mass panel-supported
comprehensive immunomonitoring after CAR-T
cell administration

The combination of antibodies in our customized Maxpar

panel allowed characterization of CAR and non-CAR

immune cells and their functional states, in a single pass and

over time (Fig 2A). Data were analyzed via the Maxpar Path-

setter software (Gemstone) which generates a visual display

of high-dimensional data.

We present here preliminary observations on peripheral

blood of five patients followed over time after CAR-T-cell

administration. Kinetics of CAR and non-CAR immune cell

activation is poorly known and Fig 2A, panels a and b give a

simple and comprehensive picture of their massive activa-

tion. Almost all (92 � 4%) CAR-T cells, mainly CD8+, were

activated on day 7 as demonstrated by HLA-DR and CD69

expression (Fig 2A, panel b). Activation decreased from

day 14 but activated CAR-T could be detected up to five

months post administration. Exhaustion and senescence are

critical dysfunctional states impacted by persistent stimula-

tion and a high level of senescence was observed in CAR-T

cells (mean, 65 � 5% from day 14 to 28; Fig 2A, panel c).

Among non-CAR immune cells (Fig 2A, panel a),

macrophages/monocytes have been reported as key mediators

in CAR-T-related toxicities; here almost all monocytes

demonstrated an inflammatory profile of M1 monocytes

CD14++C16� (mean, 93 � 4%) on days 7 and 14. The com-

binatorial expression of HLA-DR and CD69, and CD16/

CD56/NKp30, demonstrated the activated states of TCD8+

lymphocytes (mean, 82 � 7%) and cytolytic NK cells (mean,

65 � 4%) respectively on days 7 and 14.

It is now clear that less differentiated lymphocytes are

more effective in the transfer of immunity for adoptive cell

therapy and our approach also provided information regard-

ing maturation and antigen-experience states (na€ıve, effector,

central memory) of CAR and non-CAR cells by evaluating

the differential expression patterns of CCR7 and CD45RA.13

In our small group of patients, the effector memory state of

CAR-T cells varied from 64% to 95% (Fig 2A, panel d).

Finally, this platform allowed the clustering of CAR and

non-CAR immune cells and offered an overview of highly

expressed markers on specific subpopulations (Fig 2B). We

could note a high expression of PD1 until day 28 on CD8+

CAR-T cells (mean, 53 � 4%) suggesting that CAR-T cells

could in part circumvent the PD-L1/PD1 brake.14 The

expression of PD1 and some chemokine receptors on CAR-T

cells could be a sensitive biomarker as suggested by the three

patients who achieved complete or partial responses and this

could support further investigations.

This integrated method could also track signatures for

personalized therapeutic strategies. In Figure S2, we also

report the real-time characterization of an activated popula-

tion of Th17 lymphocytes in blood and bone marrow sam-

ples of a patient that experienced a profound aplasia after

CAR-T-cell administration. This suggested that haematologic

toxicity following CAR-T-cell infusions could be due to

immune-mediated bone marrow failure as described in spo-

radic aplastic anaemia and provide orientations for adapted

therapeutic strategies.

Together, we found that mass cytometry-based platform

offers a powerful and reliable tool for comprehensive

description of CAR-T and environmental immune cell sub-

sets and opens new opportunities to identify immune signa-

tures and support personalization of therapeutic strategy to

enhance CAR-T-cell efficacy.
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Supporting Information

Additional supporting information may be found online in

the Supporting Information section at the end of the article.

Table SI. Characteristics of the patients.

Fig S1. The CAR-T-cell detection reagent from Miltenyi

Biotec (Bergisch Gladbach, Germany) provides better dis-

crimination in comparison with the Acrobiosystems (New-

ark, DE, USA) reagent for CD19+ CAR-T-cell determination.

Fig S2. Signature associated with post CAR-T cells aplasia

in a given patient. Real-time characterization of activated

populations of Th17 and CD69 lymphocytes and regulatory

T lymphocytes (TReg) in the blood and bone marrow of a

patient displaying profound aplasia on day 60 after CAR-T-

cell administration (left and middle panels). Note that in

blood, the Th17 cell population is present at a high level

compared to that in a panel of patients who rapidly recov-

ered following CAR-T-cell infusion (right panel). Black indi-

cates unsigned cell populations.
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